1
|
Manzoor R, Sehrish A, Wang H, Wang H, Fan D, Liu X, Wu D, Wei Q. An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe 2 and Gd 2(MoO 4) 3 for estriol detection. Anal Chim Acta 2025; 1340:343608. [PMID: 39863308 DOI: 10.1016/j.aca.2025.343608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe2 and Gd2(MoO4)3 was fabricated for ultrasensitive detection of estriol. Graphene oxide (GO) increased the electric conductivity and surface area of SmMoSe2 and gold nanoparticles (AuNPs) improved the electrochemical active sites of GO@SmMoSe2. In order to further amplify the ECL signals, Gd2(MoO4)3 with excellent electron transfer capability were used for binding E3-antigen (Ag). Then, Gd2(MoO4)3-Ag/BSA competed with Standard E3 for limited number of antibodies to construct a competitive ECL immunosensor. RESULTS Under optimized condition, the proposed competitive ECL immunosensor was used to detect various concentrations of Standard E3 samples. In addition, the proposed ECL immunosensor showed the high sensitivity for E3 detection in range between 0.001 and 500 ng/mL with the detection limit of 0.0073 ng/mL (S/N = 3). The wider linear range and lower detection limits of the proposed ECL immunosensor might be attributed to outstanding ECL properties of AuNPs@GO@SmMoSe2 and Gd2(MoO4)3 nanosheets. Furthermore, the proposed competitive ECL immunosensor was also compared with various detection methods. Based on above, the fabricated ECL immunosensor was employed for real sample analysis with acceptable RSD values and recoveries. SIGNIFICANCE A dual signal amplification strategy enhanced the potential of the well-prepared ECL immunosensor for detecting E3 samples in the real environment. Thereby, the successfully fabricated competitive ECL immunosensor with excellent electrochemical properties, long term storage stability, and high sensitivity and selectivity validated its potential application for environmental monitoring and analysis.
Collapse
Affiliation(s)
- Romana Manzoor
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Aniqa Sehrish
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hanyu Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dawei Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xuejing Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Hai N, Yi H, Bai Y, Zhang L, Chi H, Yan J, Zhao L, Cai S. HOF-derived Step-Scheme FJU-200@CdSe heterojunction: A photoelectrochemical sensing platform for sensitive detection of EGFR. Biosens Bioelectron 2025; 267:116862. [PMID: 39461098 DOI: 10.1016/j.bios.2024.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Here, a photoelectrochemical (PEC) immunosensor based on the FJU-200@CdSe heterostructure was developed for epidermal growth factor receptor (EGFR) detection. This is the first application of FJU-200 in PEC. After modification using CdSe quantum dots (QDs), FJU-200 and CdSe QDs formed an S-scheme heterostructure due to the interleaved energy band structure and the difference in Fermi energy (Ef) levels, which generated an efficient and stable PEC signal. When EGFR bound specifically to the antibody, a large spatial site resistance was generated, which hindered the electron transfer at the interface and the PEC signal was quenched. The proposed PEC sensing platform exhibited excellent detection performance for EGFR, with a good linear relationship with the photocurrent change value (ΔI) in the detection range of 10 fg/mL-100 ng/mL, and the detection limit was as low as 1.08 fg/mL. This work illustrates the potential electron transfer pathway between FJU-200 and CdSe QDs and creatively applies to the construction of PEC immunosensors, providing a new option for the detection of EGFR as well as other substances to be tested.
Collapse
Affiliation(s)
- Nan Hai
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Han Yi
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Yining Bai
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Lingyun Zhang
- Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Haonan Chi
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Jiajing Yan
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Shuang Cai
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
3
|
Kong Y, Qian X, Mei X, Ma J, Wu K, Deng A, Li J. Electrochemiluminescence immunoassay system based on PCN-224-Mn and gold-platinum bimetallic nanoflowers for sensitive detection of ochratoxin A. Talanta 2025; 281:126937. [PMID: 39326117 DOI: 10.1016/j.talanta.2024.126937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this work, a novel Electrochemiluminescence Immunosensor was constructed using PCN-224-Mn and gold-platinum nanoflowers (AuPt NFs) for the ultrasensitive detection of ochratoxin A (OTA). PCN-224 modified with Mn (II) was synthesized as a probe material. The interaction efficiency of PCN-224 with S2O82- was also greatly improved. AuPt NFs were used as the substrate material for the electrodes. It has favorable biocompatibility, large specific surface area and can bind more antigen. Also greatly increased the electroactive surface area and conductivity of the electrode. OTA was detected using a competitive immunoassay strategy, in which OTA in the sample competes with the encapsulated antigen for a finite number of antibodies. ECLIA for the detection of OTA was designed to be highly sensitive, with a linear range from 0.0002 ng mL-1 to 1000 ng mL-1 and a LOD as low as 0.067 pg mL-1. In addition, it was evident from the electrochemical analyses that PCN-224-Mn had a stronger and more stable ECL signal compared to the plain PCN-224. The successful preparation of specific, sensitive and reproducible ECL immunosensors confirms the great promise for the detection of OTA or other small molecule mycotoxins.
Collapse
Affiliation(s)
- Yue Kong
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xinyue Qian
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xiao Mei
- Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China
| | - Jun Ma
- Suzhou Shanding Honey Product Co., Ltd, Suzhou, 215101, PR China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China.
| |
Collapse
|
4
|
Fang J, Dai L, Ren X, Wu D, Cao W, Wei Q, Ma H. Protein-driven interaction enhanced electrochemiluminescence biosensor of hydrogen-bonded biohybrid organic frameworks for sensitive immunoassay of disease markers. Biosens Bioelectron 2024; 266:116726. [PMID: 39226752 DOI: 10.1016/j.bios.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
The oriented design of reticular materials as emitters can significantly enhance the sensitivity of electrochemiluminescence (ECL) sensing analysis for disease markers. However, due to the structural fragility of hydrogen bonds, relational research on hydrogen-bonded organic frameworks (HOFs) has not been thoroughly conducted. Additionally, the modulation of luminescence behavior through HOFs has been rarely reported. In view of this, hydrogen-bonded biohybrid organic frameworks (HBOFs) were synthesized and recruited for ECL immunoassay applications. HBOFs was easily prepared using 6,6',6″,6‴-(pyrene-1,3,6,8-tetrayl)tetrakis(2-naphthoic acid) as linkers via bovine serum albumin (BSA) activated hydrogen-bonded cross-linking. The material exhibited good fluorescence emission characteristics. And the highly ordered topological structure and molecular motion limitation mediated by BSA overcome aggregation-caused quenching and generate strong aggregation induced emission, expressing hydrogen-bond interaction enhanced ECL (HIE-ECL) activity with the participation of tri-n-propylamine. Furthermore, a sandwich immunosensor was constructed employing cobalt-based metal-phenolic network (CMPN) coated ferrocene nanoparticles (FNPs) as quenchers (CMPN@FNPs). Signal closure can be achieved by annihilating the excited state through electron transfer from both CMPN and FNPs. Using a universal disease marker, carcinoembryonic antigen, as the analysis model, the signal-off sensor obtained a detection limit of 0.47 pg/mL within the detection range of 1 pg/mL - 50 ng/mL. The synthesis and application of highly stable HBOFs triggered by proteins provide a reference for the development of new reticular ECL signal labels, and electron transfer model provides flexible solutions for more sensitive sensing analysis.
Collapse
Affiliation(s)
- Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Li Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
5
|
Zhu HT, Bao JY, Kang JW, Wang AJ, Yuan PX, Feng JJ. Hydrogen-Bond-Induced Melem Assemblies to Resist Aggregation-Caused Quenching for Ultrasensitive ECL Detection of COVID-19 Antigen. Anal Chem 2024. [PMID: 39560124 DOI: 10.1021/acs.analchem.4c04016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nowadays, aggregation-caused quenching (ACQ) of organic molecules in aqueous media seriously restricts their analytical and biomedical applications. In this work, hydrogen bond (H-bond) was utilized to resist the ACQ effect of 2,5,8-triamino-1,3,4,6,7,9,9b-heptaazaphenalene (Melem) as an advanced electrochemiluminescence (ECL) luminophore, whose ECL process was carefully studied in an aqueous K2S2O8 system coupled with electron paramagnetic resonance (EPR) measurements. Notably, the H-bond-induced Melem assemblies (Melem-H) showed 16.6-fold enhancement in the ECL signals as compared to the Melem aggregates (Melem-A), combined by elaborating the enhanced mechanism. On such basis, the effective ECL signal transduction was in situ achieved through the specific recognition of the double-stranded DNA embedded in Melem-H assemblies (Me-dsDNA) with spike protein (SP) of coronavirus disease 2019 (COVID-19). For that, such an ECL biosensor showed a wider linear range (1.0-125.0 pg mL-1) with a lower limit of detection (LOD) down to 0.45 pg mL-1, which also displayed acceptable results in analysis of human nasal swab samples. Therefore, the work provides a distinctive insight on addressing the ACQ effect and broadening the application scope of the organic emitter and offers a simple platform for biomedical detection.
Collapse
Affiliation(s)
- Hao-Tian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jing-Yi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jin-Wei Kang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
6
|
Ning W, Xiang Y, Zhang L, Ye N. Hydrogen-bonded organic frameworks as stationary phase for open-tubular capillary electrochromatography. Anal Chim Acta 2024; 1326:343148. [PMID: 39260915 DOI: 10.1016/j.aca.2024.343148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Capillary electrochromatography (CEC) stationary phases have always been the focus of attention. The selection of excellent stationary phases are the key to realize separate of different compounds. Hydrogen-bonded organic frameworks (HOFs) are porous materials connected by hydrogen bonds between molecules, which have the advantages of renewable, high specific surface area and mild synthesis conditions. At present, HOFs are used in gas adsorption and storage, catalysis and drug delivery. Because of its unique advantages, HOFs have a bright future as CEC stationary phases. RESULTS Using melamine (MA) and 1,3,6,8-tetra (4-carboxylphenyl)pyrene (H4TBAPy) as reaction monomers, a HOFs named MA/PFC-1 was synthesized by solvent evaporation at room temperature. The inner wall of the capillary column was coated with MA/PFC-1 by chemical bonding. Sulfonamides were used as the target analytes. The effects of pH, phosphate buffer solution concentration, organic additive content and applied voltage on sulfonamides separation were investigated. The MA/PFC-1-coated capillary column had good resolution (>1.5) and reproducibility. The intra-day, inter-day, column-to-column, and inter-batch precision of the retention times were 0.03%-0.09%, 0.04%-0.09%, 0.03%-0.14% and 0.06%-0.09%, respectively. The intra-day, inter-day, column-to-column, and inter-batch precision of the peak areas were 0.11%-0.25%, 0.13%-0.20%, 0.12%-0.15% and 0.08%-0.15%, respectively. The MA/PFC-1-coated capillary column was run 150 consecutive times, and the results showed no noticeable change, which proved that this method had good stability. SIGNIFICANCE This work applied HOFs to CEC. The results show the that MA/PFC-1-coated capillary column has good separation performance. The MA/PFC-1-coated capillary column has been successfully applied to the determination of sulfamethoxazole in tablets, which has practical application value. To open up the application of HOFs in CEC and provide a new idea for developing new CEC stationary phases.
Collapse
Affiliation(s)
- Weijie Ning
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
7
|
Liang Z, Wang P, Li Z, Li W, Ma Q. Au Nanorings/TiO 2 NPs@MXene-Based Metasurfaces with a Magnetic Mirror-Modulated ECL Strategy for Extracellular Vesicle Detection. Anal Chem 2024; 96:16443-16452. [PMID: 39347690 DOI: 10.1021/acs.analchem.4c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
A metasurface as an artificial electromagnetic structure can concentrate optical energy into nanometric volumes to strongly enhance the light-matter interaction, which has been becoming a powerful platform for optical sensing, nonlinear effects, and quantum optics. Herein, we developed a novel hybrid plasmonic-dielectric metasurface consisting of Au nanorings (Au NRs) and TiO2 nanoparticles derived from MXene (TiO2 NPs@MXene). The hybrid metasurface simultaneously benefited from the high near-field enhancement effect of plasmonic materials and the low loss of dielectric materials. Furthermore, the optical modulation efficiency of the hybrid metasurface can be regulated by a magnetic mirror configuration. The magnetic mirror acted like a mirror, confining the electrons to a limited region and increasing the density of the surface plasmon. Moreover, the electrochemiluminescence (ECL) of the Cu2BDC metal-organic framework (Cu2BDC-MOF) served as a light source for the Au NRs/TiO2 NPs@MXene metasurface. Due to the exceptional light manipulation capability of the hybrid metasurface and the coordination of the magnetic mirror, the isotropic ECL signal can be dynamically amplified and converted into polarized emission. Finally, a metasurface-regulated ECL (MECL)-based biosensor with a dual-positive membrane protein recognition strategy was developed for the accurate identification of gastric cancer-derived extracellular vesicles. The novel MECL research opened up a new route in the realization of dynamically tunable metasurfaces for optical sensing and novel nanophotonic devices.
Collapse
Affiliation(s)
- Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenyan Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Lai W, Yan S, Jiang M, Wang M, Qiao X, Hong C. Dual-Mode Immunoassay Constructed by Water-Induced Perylene Diimide Supramolecular Self-Assembly and Enzymatic Biocatalytic Precipitation Strategy. Anal Chem 2024. [PMID: 39146222 DOI: 10.1021/acs.analchem.4c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A water-induced electron-deficient dye, the supramolecule perylene diimide (PDI), has been identified recently. PDI possesses advantages such as easy reduction, nontoxicity, low cost, and simple preparation, making it a promising candidate for electrochemiluminescence (ECL) sensing platforms. In this study, a series of PDI supramolecular systems with morphological changes were prepared by utilizing water molecules to induce PDI self-assembly. This method improves the π-π stacking interactions between PDI molecules and effectively mitigates the aggregation-caused quenching (ACQ) effect on the luminous efficiency of the coplanar polycyclic aromatic hydrocarbon PDI. It is noteworthy that excellent ECL emission performance of the PDI supramolecular system was observed at -0.4 V. This low excitation potential aids in preserving antigen-antibody bioactivity and ensures accurate identification of the immune response. As a proof of concept, a dual-mode immunosensing platform for carcinoembryonic antigen (CEA) detection was constructed using an enzymatic biocatalytic precipitation (EBCP) strategy. The dual-mode immunosensor exhibited good detection performance in the concentration range of 0.001-80 ng·mL-1, presenting an advanced bioprotective analytical method for CEA detection.
Collapse
Affiliation(s)
- Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Shijie Yan
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Min Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xiuwen Qiao
- School of Pharmacy, Xinjiang Second Medical College, No.12 Shengli Road, Karamay 834000, China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
9
|
Huang X, Sun Q, Zhao J, Wu G, Zhang Y, Shen Y. Recent progress on charge transfer engineering in reticular framework for efficient electrochemiluminescence. Anal Bioanal Chem 2024; 416:3859-3867. [PMID: 38613684 DOI: 10.1007/s00216-024-05279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
Electrochemiluminescence (ECL) is a luminescence production technique triggered by electrochemistry, which has emerged as a powerful analytical technique in bioanalysis and clinical diagnosis. During ECL, charge transfer (CT) is an important process between electrochemical excitation and luminescent emission, and dramatically affects the efficiency of exciton generation, playing a pivotal role in the light-emitting properties of nanomaterials. Reticular framework materials with intramolecular/intermolecular interactions offer a promising platform for regulating CT pathways and enhancing luminescence efficiency. Deciphering the role of intramolecular/intermolecular CT processes in reticular framework materials allows for the targeted design and synthesis of emitters with precisely controlled CT properties. This sheds light on the microscopic mechanisms of electro-optical conversion in ECL, propelling advancements in their efficiency and breakthrough applications. This mini-review focuses on recent advancements in engineering CT within reticular frameworks to boost ECL efficiency. We summarized strategies including intra-reticular charge transfer, CT between the metal and ligands, and CT between guest molecules and frameworks within reticular frameworks, which holds promise for developing next-generation ECL devices with enhanced sensitivity and light emission.
Collapse
Affiliation(s)
- Xinzhou Huang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Qian Sun
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Jinjin Zhao
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Li H, Cai Q, Wang Y, Jie G, Zhou H. Spatial-Potential-Color-Resolved Bipolar Electrode Electrochemiluminescence Biosensor Using a CuMoOx Electrocatalyst for the Simultaneous Detection and Imaging of Tetracycline and Lincomycin. Anal Chem 2024; 96:7073-7081. [PMID: 38663374 DOI: 10.1021/acs.analchem.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A spatial-potential-color-resolved bipolar electrode electrochemiluminescence biosensor (BPE-ECL) using a CuMoOx electrocatalyst was constructed for the simultaneous detection and imaging of tetracycline (TET) and lincomycin (LIN). HOF-101 emitted peacock blue light under positive potential scanning, and CdSe quantum dots (QDs) emitted green light under negative potential scanning. CuMoOx could catalyze the electrochemical reduction of H2O2 to greatly increase the Faradic current of BPE and realize the ECL signal amplification. In channel 1, CuMoOx-Aptamer II (TET) probes were introduced into the BPE hole (left groove A) by the dual aptamer sandwich method of TET. During positive potential scanning, the polarity of BPE (left groove A) was negative, resulting in the electrochemical reduction of H2O2 catalyzed by CuMoOx, and the ECL signal of HOF-101 was enhanced for detecting TET. In channel 2, CuMoOx-Aptamer (LIN) probes were adsorbed on the MXene of the driving electrode (DVE) hole (left groove B) by hydrogen-bonding and metal-chelating interactions. LIN bound with its aptamers, causing CuMoOx to fall off. During negative potential scanning, the polarity of DVE (left groove B) was negative and the Faradic current decreased. The ECL signal of CdSe QDs was reduced for detecting LIN. Furthermore, a portable mobile phone imaging platform was built for the colorimetric (CL) detection of TET and LIN. Thus, the multiple mode-resolved detection of TET and LIN could be realized simultaneously with only one potential scan, which greatly improved detection accuracy and efficiency. This study opened a new technology of BPE-ECL sensor application and is expected to shine in microchips and point-of-care testing (POCT).
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yuehui Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hong Zhou
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
11
|
Yuan PX, Song SS, Zhan J, Chen C, Wang AJ, Feng JJ. Self-enhanced Electrochemiluminescence Luminophore Based on Pd Nanocluster-Anchored Metal Organic Frameworks via Ion Annihilation for Sensitive Cell Assay of Human Lung Cancer. Anal Chem 2023; 95:18572-18578. [PMID: 38064592 DOI: 10.1021/acs.analchem.3c04423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Electrochemiluminescence (ECL) has attracted significant interest in the analysis of cancer cells, where the ruthenium(II)-based emitter demonstrates urgency and feasibility to improve the ECL efficiency. In this work, the self-enhanced ECL luminophore was prepared by covalent anchoring of Pd nanoclusters on aminated metal organic frameworks (Pd NCs@MOFs), followed by linkage with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) (RuP). The resultant luminophore showed 214-fold self-magnification in the ECL efficiency over RuP alone, combined by promoting the interfacial photoelectron transfer. The enhanced mechanism through ion annihilation was critically proved by controlled experiments and density functional theory (DFT) calculations. Based on the above, a "signal off" ECL biosensor was built by assembly of tyrosine kinase 7 (PTK-7) aptamer (Apt) on the established sensing platform for analysis of human lung cancer cells (A549). The built sensor showed a lower detection limit of 8 cells mL-1, achieving the single-cell detection. This work reported a self-enhanced strategy for synthesis of advanced ECL emitters, combined by exploring the ECL biosensing devices in the single-cell analysis of cancers.
Collapse
Affiliation(s)
- Pei-Xin Yuan
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shu-Shu Song
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiale Zhan
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Can Chen
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
12
|
Yu D, Zhang H, Ren J, Qu X. Hydrogen-bonded organic frameworks: new horizons in biomedical applications. Chem Soc Rev 2023; 52:7504-7523. [PMID: 37814831 DOI: 10.1039/d3cs00408b] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are an emerging attractive class of highly crystalline porous materials characterized by significant biocompatibility, rich chemical functionalities and well-defined porosity. The unique advantages including metal-free nature and reversible binding manner significantly distinguish HOFs from other porous materials in the biotechnology and biomedical field. However, the relevant HOF studies still remain in their infancy despite the promising and remarkable results that have been presented in recent years. Due to the intricate and dynamic nature of physiological conditions, the major challenge lies in the stability and structural diversity of HOFs in vivo. In this Tutorial Review, we summarize the common building blocks for the construction of HOF-based functional biomaterials and the latest developments in the biological field. Moreover, we highlight current challenges regarding the stability and functionalization of HOFs along with the corresponding potential solutions. This Tutorial Review will have a profound effect in future years on the design and applications of HOF-based biomaterials.
Collapse
Affiliation(s)
- Dongqin Yu
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haochen Zhang
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Chu K, Ding Z, Zysman-Colman E. Materials for Electrochemiluminescence: TADF, Hydrogen-Bonding, and Aggregation- and Crystallization-Induced Emission Luminophores. Chemistry 2023; 29:e202301504. [PMID: 37344360 DOI: 10.1002/chem.202301504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
Electrochemiluminescence (ECL) is a rapidly growing discipline with many analytical applications from immunoassays to single-molecule detection. At the forefront of ECL research is materials chemistry, which looks at engineering new materials and compounds exhibiting enhanced ECL efficiencies compared to conventional fluorescent materials. In this review, we summarize recent molecular design strategies that lead to high efficiency ECL. In particular, we feature recent advances in the use of thermally activated delayed fluorescence (TADF) emitters to produce enhanced electrochemiluminescence. We also document how hydrogen bonding, aggregation, and crystallization can each be recruited in the design of materials showing enhanced electrochemiluminescence.
Collapse
Affiliation(s)
- Kenneth Chu
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Zhifeng Ding
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
14
|
Liang P, Huang W, Li C, Li X, Lai G. Dual cascade DNA walking-induced "super on" photocurrent response for constructing a novel antibiotic biosensing method. Anal Chim Acta 2023; 1264:341240. [PMID: 37230718 DOI: 10.1016/j.aca.2023.341240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
The construction of effective methods for the convenient testing of antibiotic residues in real samples has attracted considerable interest. Herein, we designed a dual cascade DNA walking amplification strategy and combined it with the controllable photocurrent regulation of a photoelectrode to develop a novel photoelectrochemical (PEC) biosensing method for antibiotic detection. The photoelectrode was prepared through the surface modification of a glassy carbon electrode with the TiO2/CdS QDs nanocomposite synthesized by an in situ hydrothermal deposition method. The strong anodic PEC response of the nanocomposite could be well inhibited by the introduction of a silver nanoclusters (Ag NCs)-labeled DNA hairpin onto its surface. Upon the target biorecognition reaction, an Mg2+-dependent DNAzyme (MNAzyme)-driven DNA walking was triggered to release another MNAzyme strand-linked streptavidin (SA) complex. As this SA complex could serve as a four-legged DNA walker, its cascade walking on the electrode surface not only released Ag NCs but also caused the linking of Rhodamine 123 with the electrode to realize the "super on" photocurrent output. By using kanamycin as the model analyte, this method showed a very wide linear range from 10 fg mL-1 to 1 ng mL-1 and a very low detection limit of 0.53 fg mL-1. Meanwhile, the simple photoelectrode preparation and the aptamer recognition-based autonomous DNA walking resulted in the convenient manipulation and excellent repeatability. These unique performances determine the great potential of the proposed method for practical applications.
Collapse
Affiliation(s)
- Pan Liang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Can Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
15
|
Mwanza C, Ding SN. Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review. BIOSENSORS 2023; 13:666. [PMID: 37367031 PMCID: PMC10295983 DOI: 10.3390/bios13060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Recently, there has been an upsurge in the extent to which electrochemiluminescence (ECL) working in synergy with bipolar electrochemistry (BPE) is being applied in simple biosensing devices, especially in a clinical setup. The key objective of this particular write-up is to present a consolidated review of ECL-BPE, providing a three-dimensional perspective incorporating its strengths, weaknesses, limitations, and potential applications as a biosensing technique. The review encapsulates critical insights into the latest and novel developments in the field of ECL-BPE, including innovative electrode designs and newly developed, novel luminophores and co-reactants employed in ECL-BPE systems, along with challenges, such as optimization of the interelectrode distance, electrode miniaturization and electrode surface modification for enhancing sensitivity and selectivity. Moreover, this consolidated review will provide an overview of the latest, novel applications and advances made in this field with a bias toward multiplex biosensing based on the past five years of research. The studies reviewed herein, indicate that the technology is rapidly advancing at an outstanding purse and has an immense potential to revolutionize the general field of biosensing. This perspective aims to stimulate innovative ideas and inspire researchers alike to incorporate some elements of ECL-BPE into their studies, thereby steering this field into previously unexplored domains that may lead to unexpected, interesting discoveries. For instance, the application of ECL-BPE in other challenging and complex sample matrices such as hair for bioanalytical purposes is currently an unexplored area. Of great significance, a substantial fraction of the content in this review article is based on content from research articles published between the years 2018 and 2023.
Collapse
Affiliation(s)
- Christopher Mwanza
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Chemistry Department, University of Zambia, Lusaka 10101, Zambia
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
16
|
Hu X, Wu X, Xiong Z, Wang XT, Wang AJ, Yuan PX, Zhao T, Feng JJ. In situ electrostatic assembly of porphyrin as enhanced PEC photosensitizer for bioassay of single HCT-116 cells via competitive reaction. Biosens Bioelectron 2023; 236:115405. [PMID: 37267689 DOI: 10.1016/j.bios.2023.115405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
Nowadays, synthesis of novel organic photosensitizer is imperative but challenging for photoelectrochemical (PEC) assay in analytical and biomedical fields. In this work, the PEC responses enhanced about 4.3 folds after in situ electrostatic assembly of 1-butyl-3-methylimidazole tetrafluoroborate ([BIm][BF4]) on meso-tetra (4-carboxyphenyl) porphine (TP), which was first covalently linked with NH2 modified indium tin oxide electrode ([BIm]+--TP-NH2-ITO). Moreover, the [BIm]+--TP-NH2-ITO showed a much larger photocurrent in a water/dimethyl sulfoxide (DMSO) binary solvent with a water fraction (fw) of 90%, which displayed 6.7-fold increase over that in pure DMSO, coupled by discussing the PEC enhanced mechanism in detail. Then, the PEC signals were sharply quenched via a competitive reaction between magnetic bead linked dsDNA (i.e., initial hybridization of aptamer DNA with linking DNA) and HCT-116 cells (closely associated with CRC), where the liberated L-DNA stripped the [BIm]+ from [BIm]+--TP-NH2-ITO. The PEC detection strategy exhibited a wider linear range (30 ∼ 3 × 105 cells mL-1) and a lower limit of detection (6 cells mL-1), achieving single-cell bioanalysis even in diluted human serum sample. The in situ assembly strategy offers a valuable biosensing platform to amplify the PEC signals with advanced organic photosensitizer for early diagnosis of tumors.
Collapse
Affiliation(s)
- Xiang Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiajunpeng Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin-Tao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Tiejun Zhao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
17
|
Yang W, Chen Y, Mei M, Li W, Wang C, Yang Y, Liang J, Guo Z, Wu L, Chen X. Synergetic argentophilic and through space electronic interactions in a single-crystal-to-single-crystal photocycloaddition reaction: a mechanistic study. Phys Chem Chem Phys 2023; 25:12783-12790. [PMID: 37128988 DOI: 10.1039/d3cp00838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ag(I) is able to mediate single-crystal-to-single-crystal transformation through [2+2] photocycloaddition to prepare high-conductivity materials. However, the intrinsic mechanism of Ag(I) mediation, the detailed photophysical and photochemical processes as well as the origin of the enhanced conductivity of nanocrystals are still unclear. In this work, the comprehensive kinetic scheme and regulation mechanism are established by the accurate QM/MM calculations at the CASPT2//CASSCF/AMBER level of theory with consideration of the crystal environment. We find that the argentophilic interaction and through space electronic interaction are the key factors that promote Ag(I)-mediated [2+2] PCA reactions and may account for the enhancement of conductivity. These mechanistic insights into the Ag(I)-regulated photo-dimerization in the crystal surrounding are beneficial for the design of the structurally and electrically favorable skeletons of a metal-organic coordination polymer.
Collapse
Affiliation(s)
- Wenjing Yang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.
| | - Yonglin Chen
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.
| | - Min Mei
- College of Science, Hunan College for Preschool Education, Changde, Hunan, 415000, P. R. China
| | - Weijia Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Chu Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Yanting Yang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Jing Liang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.
| | - Liangliang Wu
- Laboratory of Beam Technology and Energy Materials, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, P. R. China.
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| |
Collapse
|
18
|
Zhang X, Du Y, Liu X, Feng R, Jia Y, Ren X, Zhang N, Liu L, Wei Q, Ju H. Enhanced anode electrochemiluminescence in split aptamer sensor for kanamycin trace monitoring. Food Chem 2023; 420:136083. [PMID: 37059023 DOI: 10.1016/j.foodchem.2023.136083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Covalently modifying electrochemiluminescence (ECL) luminophores to alter their energy levels or generate energy/electron transfer processes for improved performance is hindered by the complex design and fabrication processes. In this study, non-covalent bond self-assembly was employed to enhance the ECL property of gold nanoclusters with tryptophan (Try) and mercaptopropionic acid (MPA) as ligands (Try-MPA-gold nanoclusters). Specifically, through the molecular recognition of Try by cucurbit[7]uril, some non-radiative transition channels of the charge carriers on the surface of the Try-MPA-gold nanoclusters were restricted, resulting in a significant enhancement of the ECL intensity of the nanoclusters. Furthermore, rigid macrocyclic molecules acted on the surface of the nanoclusters through self-assembly, forming a passive barrier that improved the physical stability of the nanoclusters in the water-phase and indirectly improved their luminescent stability. As an application, cucurbit[7]uril-treated Try-MPA-gold nanoclusters (cucurbit[7]uril@Try-MPA-gold nanoclusters) were used as signal probes, and Zn-doped SnO2 nanoflowers (Zn-SnO2 NFs) with high electron mobility were used as electrode modification material to establish an ECL sensor for kanamycin (KANA) detection, utilizing split aptamers as capture probes. The advanced split aptamer sensor demonstrated excellent sensitivity analysis for KANA in complex food substrates with a recovery rate of 96.2 to 106.0%.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yu Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Shen KY, Zhan J, Shen L, Xiong Z, Zhu HT, Wang AJ, Yuan PX, Feng JJ. Hydrogen Bond Organic Frameworks as Radical Reactors for Enhancement in ECL Efficiency and Their Ultrasensitive Biosensing. Anal Chem 2023; 95:4735-4743. [PMID: 36852949 DOI: 10.1021/acs.analchem.2c05535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Nowadays, electrochemiluminescence (ECL) efficiency of an organic emitter is closely related with its potential applications in food safety and environmental monitoring fields. In this work, 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (TATB) was self-assembled to form hydrogen bond organic frameworks (HOFs), which worked as ideal reactors to generate highly active oxygen-containing radicals, followed by linking with isoluminol (ILu) via amide bond (termed ILu-HOFs). After covalent assembly with aminated indium-tin oxide electrode (labeled NH2-ITO), the ECL efficiency of the ILu-HOFs NH2-ITO showed about a 23.4-time increase over that of ILu itself in the presence of H2O2. Meanwhile, the enhanced ECL mechanism was mainly studied by electron paramagnetic resonance, theoretical calculation, and electrochemistry. On the above foundation, an aptamer "sandwich" ECL biosensor was constructed for detecting isocarbophos (ICP) via in situ elimination of H2O2 with catalase-linked palladium nanocubes (CAT-Pd NCs). The as-built sensor showed a broad linear range (1 pM to 100 nM) and a low limit of detection (LOD) down to 0.4 pM, coupled with efficient assays of ICP in lake water and cucumber juice samples. This strategy provides an effective way for the synthesis of advanced ECL emitter, coupled by showing promising applications in environmental and food analysis.
Collapse
Affiliation(s)
- Ke-Yi Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiale Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Luan Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Hao-Tian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
20
|
Liu SQ, Chen JS, Liu XP, Mao CJ, Jin BK. An electrochemiluminescence aptasensor based on highly luminescent silver-based MOF and biotin-streptavidin system for mercury ion detection. Analyst 2023; 148:772-779. [PMID: 36661384 DOI: 10.1039/d2an02036j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study, for the first time, a silver-based metal-organic framework (Ag-MOF) was synthesized and used as the electrochemiluminescence (ECL) emitter for building an ECL sensor. After modification with chitosan (CS) and gold nanoparticles (Au NPs), the ECL stability of Ag-MOF was improved. To detect mercury ions, a biosensor was constructed using the mercury ion aptamer and steric effect of streptavidin. First, the capture strand (cDNA) with terminal-modified sulfhydryl group was attached to the electrode surface by the Au-S bond. Then, the mercury-ion aptamer (Apt-Hg) modified with biotin was anchored to the electrode by complementary pairing with cDNA. Streptavidin (SA) could be fixed on the electrode by linking with biotin, thereby reducing the ECL signal. However, in the presence of mercury ions, the aptamer was removed and streptavidin could not be immobilized on the electrode. Hence, the ECL signal of the sensor increased with the concentration of mercury ions, which was linear in the range from 1 μM to 300 fM. The detection limit could reach 66 fM (S/N = 3). The sensor provided a new method for the detection of mercury ions.
Collapse
Affiliation(s)
- Si-Qi Liu
- Department of Chemistry, Anhui University, Hefei, China.
| | | | - Xing-Pei Liu
- Department of Chemistry, Anhui University, Hefei, China.
| | - Chang-Jie Mao
- Department of Chemistry, Anhui University, Hefei, China.
| | - Bao-Kang Jin
- Department of Chemistry, Anhui University, Hefei, China.
| |
Collapse
|
21
|
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023; 149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The family of electrochemiluminescent luminophores has witnessed quick development since the electrochemiluminescence (ECL) phenomenon of silicon nanoparticles was first reported in 2002. Moreover, these developed ECL nanoemitters have extensively been applied in sensitive detection of protein biomarker by combining with immunological recognition. This review firstly summarized the origin and development of various ECL nanoemitters including inorganic and organic nanomaterials, with an emphasis on metal-organic frameworks (MOFs)-based ECL nanoemitters. Several effective strategies to amplify the ECL response of nanoemitters and improve the sensitivity of immunosensing were discussed. The application of ECL nanoemitters in immunoassay of protein biomarkers for diagnosis of cancers and other diseases, especially lung cancer and heart diseases, was comprehensively presented. The recent development of ECL imaging with the nanoemitters as ECL tags for detection of multiplex protein biomarkers on single cell membrane also attracted attention. Finally, the future opportunities and challenges in the ECL biosensing field were highlighted.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
22
|
Shen L, Wang YW, Shan HY, Chen J, Wang AJ, Liu W, Yuan PX, Feng JJ. Covalent organic framework linked with amination luminol derivative as enhanced ECL luminophore for ultrasensitive analysis of cytochrome c. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4767-4774. [PMID: 36416105 DOI: 10.1039/d2ay01208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cytochrome c (cyt c) plays a critical role in mitochondrial respiratory chain, whose absence is detrimental to electron transport and reduce adenosine triphosphate. For ultrasensitive detection of cyt c, sheet-like covalent organic frameworks (COFs) were prepared by orderly accumulation of 1,3,5-benzenetricarboxaldehyde (BTA) and p-phenylenediamine (PDA), and further grafted with N-(4-aminobutyl)-N-ethylisoluminol (ABEI) - an electrochemiluminescence (ECL) emitter. Specifically, the morphology and structure of the COFs-ABEI were mainly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). In parallel, the optical properties of the emitter were certified by UV-vis absorbance spectroscopy, Fourier infrared spectroscopy (FTIR), fluorescence (FL), and ECL measurements, showing 2.25-time enhanced ECL efficiency over pure ABEI, coupled by illustrating the interfacial electron transport mechanism. On the above foundation, a label-free "signal off" ECL biosensor was constructed by virtue of the specific immune recognition between the aptamer of the target cyt c with its capture DNA (cDNA) anchored on the biosensing platform, exhibiting a wider linear range of 1.00 fg mL-1-0.10 ng mL-1 (R2 = 0.998) and a lower limit of detection (LOD) down to 0.73 fg mL-1. This work offers some constructive guidelines for sensitive bioassays of disease-related biomarkers in the clinical field.
Collapse
Affiliation(s)
- Luan Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yi-Wen Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hong-Yan Shan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jun Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
23
|
Xu Z, Guo Z, Zheng X. An Electrocatalysis and Self-Enrichment Strategy for Signal Amplification of Luminol Electrochemiluminescence Systems. Anal Chem 2022; 94:13181-13188. [DOI: 10.1021/acs.analchem.2c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongyan Xu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Zhihui Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xingwang Zheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
24
|
An Ultrasensitive Picric Acid Sensor Based on a Robust 3D Hydrogen-Bonded Organic Framework. BIOSENSORS 2022; 12:bios12090682. [PMID: 36140067 PMCID: PMC9496322 DOI: 10.3390/bios12090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022]
Abstract
Hydrogen-bonded organic frameworks (HOFs), as a newly developed porous material, have been widely used in various fields. To date, several organic building units (OBUs) with tri-, tetra-, and hexa-carboxylic acid synthons have been applied to synthesize HOFs. To our knowledge, di-carboxylic acids have rarely been reported for the construction of HOFs, in particular, di-carboxylic acid-based HOFs with fluorescence sensing properties have not been reported. In this study, a rare example of a di-carboxylic acid-based, luminescent three-dimensional hydrogen-bonded organic framework has been successfully constructed and structurally characterized; it has a strong electron-rich property originated from its organic linker 9-phenylcarbazole-3,6-dicarboxylic acid. It represents the first example of HOF-based sensors for the highly selective and sensitive detection of PA (Picric acid) with reusability; the LOD is less than 60 nM. This work thus provides a new avenue for the fabrication of fluorescent HOFs sensing towards explosives.
Collapse
|
25
|
Li SS, Wang AJ, Yuan PX, Mei LP, Zhang L, Feng JJ. Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy. Chem Sci 2022; 13:5505-5530. [PMID: 35694355 PMCID: PMC9116289 DOI: 10.1039/d2sc00460g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Heterometallic nanomaterials (HMNMs) display superior physicochemical properties and stability to monometallic counterparts, accompanied by wider applications in the fields of catalysis, sensing, imaging, and therapy due to synergistic effects between multi-metals in HMNMs. So far, most reviews have mainly concentrated on introduction of their preparation approaches, morphology control and applications in catalysis, assay of heavy metal ions, and antimicrobial activity. Therefore, it is very important to summarize the latest investigations of activity modulation of HMNMs and their recent applications in sensing, imaging and therapy. Taking the above into consideration, we briefly underline appealing chemical/physical properties of HMNMs chiefly tailored through the sizes, shapes, compositions, structures and surface modification. Then, we particularly emphasize their widespread applications in sensing of targets (e.g. metal ions, small molecules, proteins, nucleic acids, and cancer cells), imaging (frequently involving photoluminescence, fluorescence, Raman, electrochemiluminescence, magnetic resonance, X-ray computed tomography, photoacoustic imaging, etc.), and therapy (e.g. radiotherapy, chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy). Finally, we present an outlook on their forthcoming directions. This timely review would be of great significance for attracting researchers from different disciplines in developing novel HMNMs.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|