1
|
Yang JL, Wang L, Chen YF, Wang Z, Yuan R, Wang HJ. Efficient Al-H 3NTB-MOG ECL Emitter with Self-Enhanced and AIECL Performance for Ultrasensitive Sensing of miRNA-141 Combined with a Y-Shaped Multiregion Dual-Drive DNA Walker. Anal Chem 2025. [PMID: 40238736 DOI: 10.1021/acs.analchem.5c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
In this work, using Al-H3NTB-MOG with self-enhanced and aggregation-induced electrochemiluminescence (AIECL) performance as an efficient emitter, a biosensor based on a Y-shaped multiregion dual-drive DNA walker was constructed for the sensitive detection of miRNA-141. Notably, 4,4',4″-nitrilotribenzoic acid (H3NTB) was selected as the luminescent ligand with self-enhanced ECL property as the co-reactive tertiary amine in its structure. Al3+ served as a central ion to coordinate with H3NTB to form a three-dimensional porous gel structure, which restricted internal rotation and vibration of the benzene molecules and exhibited an excellent AIECL property. More interestingly, N-2-hydroxyethylpiperazine-N'-ethane-sulfonic acid (HEPES) was chosen as the system buffer, which could not only stabilize the test environment but also play a co-reaction compensation role to compensate for the consumption of the co-reactive groups in the ECL process, then significantly resulting in better stability of ECL response. Besides, an efficient dynamic signal amplification system was established based on the synergistic effect of rolling cycle amplification (RCA) process and ionic cleavage at both ends of the Y-shaped DNA nanostructure assembled by the catalytic hairpin self-assembly (CHA) reaction. Specifically, two long DNA chains with abundant recognition regions were formed by the RCA reaction as a dual-drive DNA walker, which could simultaneously walk along the predesigned tracks and shear the specific sites from two directions, effectively improving the signal amplification efficiency. In that way, the constructed biosensor realized the detection of miRNA-141 from 10 aM to 1 nM range with a detection limit as low as 6.48 aM.
Collapse
Affiliation(s)
- Jin-Li Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Li Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yi-Fei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhen Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hai-Jun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
2
|
Wang L, Wei Y, Liu X, Chen J, Mao C, Jin B. Electrochemiluminescence biosensor based on gold nanoparticles modulated cathode AIE-activated metal-organic frameworks for the ultrasensitive detection of CA15-3. Biosens Bioelectron 2025; 282:117465. [PMID: 40252375 DOI: 10.1016/j.bios.2025.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
In traditional metal-organic framework (MOF) electrochemiluminescence (ECL) systems, the organic luminescent ligands commonly exhibit aggregation-induced quenching (ACQ), which restricts both the efficiency and detection sensitivity of ECL. In this study, we employed the aggregation-induced emission (AIE) luminescent material 4',4″,4‴,4‴'-(ethene-1,1,2,2-tetrayl)tetrabiphenyl-4-carboxylic acid (H4ETTC) as a ligand and successfully synthesized a highly efficient ECL emitter (named as PCN-94) via a straightforward hydrothermal reaction. Compared to H4ETTC monomer, PCN-94 had better ECL emission, mainly due to the ECL enhancement induced by the framework. However, the luminescence of individual metal-organic framework (MOF) was unstable. To address this problem, the cathode aggregation-induced electrochemiluminescence (AIECL) performance of MOF was modulated by synthesizing two different sizes of gold nanoparticles (Au NPs). Through the tests of ultraviolet-visible (UV-vis) absorption and ECL spectra and the simulation of density functional theory (DFT) calculation, it was found that Au NPs with the size of 20 nm can enhance and stabilize the luminescence of PCN-94. On this basis, a novel "on-off" ECL biosensor was constructed, using PCN-94 as the energy donor and Fe-MIL-88 as the energy acceptor, which realized the ultra-sensitive detection of CA15-3. Therefore, this study provided a simple and effective strategy to improve the stability of AIECL materials by adjusting the size of Au NPs, which laid a solid foundation for the subsequent development and practical applications of high-performance biosensors.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Yuping Wei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China.
| | - Xingpei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China; School of Materials Science and Engineering, Hefei Institute of Technology, Hefei, 238076, China
| | - Jingshuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Changjie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China.
| | - Baokang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
3
|
Liu L, Xu Y, Fan B, Wang H, Zhang Y, Tan X, Chai Y, Yuan R. Zinc-Organic Gel with Self-Catalysis-Enhanced Electrochemiluminescence as an Emitter for the Evaluation of Liver Cancer Markers. Anal Chem 2024; 96:20510-20518. [PMID: 39679621 DOI: 10.1021/acs.analchem.4c04766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Herein, a novel zinc-organic gel with self-catalysis-enhanced electrochemiluminescence (ECL) performance was prepared as an emitter for the first time to assemble a biosensor for ultrasensitive detection of microRNA-221 (miR-221) related to liver cancer. Interestingly, Zn2+ served as a central ion to coordinate with multidentate ligands 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (TATB) at room temperature to form Zn-TATB-MOGs with excellent ECL intensity. More importantly, compared to metal ions (e.g., Al3+, Fe3+, and Eu3+) in the reported MOGs with the role of central ions, Zn2+ in Zn-TATB-MOGs not only served as the central ion but also as a coreaction promoter to facilitate the transformation of S2O82- into free radicals SO4•- to react with Zn-TATB-MOGs•- for further enhancing the ECL signal of Zn-TATB-MOGs. This was the first time to explore the promotion function of metal ions for coreaction reagents and realize the self-catalysis-enhanced ECL of MOGs. Additionally, the double domino-like cascade strand displacement amplification (DC-SDA) methods could overcome the shortcomings of time-consuming procedures and low DNA utilization in traditional cascade-free amplification methods, which significantly shortened the response time of the biosensor and improved the utilization rate of DNA. Consequently, the constructed biosensor achieved ultrasensitive detection of miR-221 with a detection limit of 2.19 aM, which was lower than reported works. This work provided new insight into broadening the development and improving the performance of MOGs as emitters, holding promise for applications in trace detection of biomarkers and early disease diagnosis.
Collapse
Affiliation(s)
- Linlei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanqi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Bihui Fan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Haijun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xingrong Tan
- Department of Endocrinology, 9th People's Hospital of Chongqing, Chongqing 400700, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
4
|
Lian Z, Li C, Wang Y, Tan L, Yu M, Xiao L, He L, Gao W, Liu Y, Ma Y, Hu J, Luo X, Li A. Tetraphenylethene-Based Covalent Organic Polymers with Aggregation-Induced Electrochemiluminescence for Highly Sensitive Bacterial Biosensors. Anal Chem 2024; 96:18690-18698. [PMID: 39530416 DOI: 10.1021/acs.analchem.4c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tetraphenylethene (TPE), which usually serves as aggregation-induced emission and aggregation-induced electrochemiluminescence fluorophores, has been widely applied in fabricating fluorescent nanomaterials and biosensors. However, it is still a tremendous challenge to prepare well-controlled TPE aggregates with strong fluorescence (FL) and electrochemiluminescence (ECL). In this study, we constructed a bacterial ECL biosensing platform with high sensitivity based on TPE-based covalent organic polymer (COP) nanoparticles synthesized by a simple Menschutkin reaction strategy to employ bromide group-carrying molecules and 1,1,2,2-tetrakis(4-(pyridine-4-yl)phenyl)ethene as the cross-linking agent and the emissive moiety, respectively. The ECL Escherichia coli biosensor had high sensitivity, a low limit of detection (0.19 CFU mL-1), a wide linear range (1 × 102-5 × 106 CFU mL-1), and good selectivity. The excellent properties of the bacterial biosensor could be attributed to the uniform spherical COP nanoparticles with enhanced FL and ECL signals, the maximal ECL efficiency of which was 8.4-fold higher than that of the typical tris(bipyridine) ruthenium(II) emitter. The FL and ECL intensities of the TPE-based COP nanoparticles could be adjusted by varying bromide group-carrying molecules and thus regulating their energy gap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) orbitals. The TPE-based COP nanoparticles with strong FL and ECL intensities pave a promising avenue to construct highly sensitive bacterial ECL biosensors for the large-scale screening of disease-causing bacteria.
Collapse
Affiliation(s)
- Ziqi Lian
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Changmao Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo People's Hospital, Ganzhou 342400, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Li Tan
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Meng Yu
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ling Xiao
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo People's Hospital, Ganzhou 342400, China
| | - Linli He
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Wenjing Gao
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Yuchan Liu
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Jianqiang Hu
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Xiang Luo
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo People's Hospital, Ganzhou 342400, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Liu J, Ming W, Zhang J, Zhou X, Qin Y, Wu L. Aggregation-induced electrochemiluminescence based on intramolecular charge transfer and twisted molecular conformation for label-free Immunoassay. Anal Chim Acta 2024; 1320:342994. [PMID: 39142778 DOI: 10.1016/j.aca.2024.342994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
Organic emitters with exceptional properties exhibit significant potential in the field of aggregation-induced electrochemiluminescence (AIECL); however, their practicality is impeded by limited ECL efficiency (ΦECL). This paper investigates a novel type of AIECL emitter (BDPPA NPs), where an efficient intramolecular charge transfer (ICT) effect and highly twisted conformation contribute to a remarkable enhancement of ECL. The ICT effect reduces the electron transfer path, while the twisted conformation effectively restricts π-π stacking and intramolecular motions. Intriguingly, compared to the standard system of [Ru(bpy)32+]/TPrA, bright emissions with up to 54 % ΦECL were achieved, enabling direct visual observation of ECL through the co-reactant route. The label-free immunosensor exhibited distinguished performance in detecting SARS-CoV-2 N protein across an exceptionally wide linear range of 0.001-500 ng mL-1, with a remarkably low detection limit of 0.28 pg mL-1. Furthermore, this developed ECL platform exhibited excellent sensitivity, specificity, and stability characteristics, providing an efficient avenue for constructing platforms for bioanalysis and clinical diagnosis analysis.
Collapse
Affiliation(s)
- Jinxia Liu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Wenjun Ming
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Jing Zhang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Xiaobo Zhou
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China.
| | - Li Wu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
6
|
Zhao XY, Liu LL, Xu YQ, Xiang L, Yuan R, Chai YQ. Dual-Ligand Europium-Organic Gels as a Highly Efficient Anodic Annihilation Electrochemiluminescence Emitter for Ultrasensitive Detection of MicroRNA. Anal Chem 2024; 96:9961-9968. [PMID: 38838250 DOI: 10.1021/acs.analchem.4c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.
Collapse
Affiliation(s)
- Xin-Yan Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin-Lei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuan-Qi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Lian Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
7
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
8
|
Bhalla N, Shen AQ. Localized Surface Plasmon Resonance Sensing and its Interplay with Fluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9842-9854. [PMID: 38684953 PMCID: PMC11100005 DOI: 10.1021/acs.langmuir.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
In this Feature Article, we discuss the interplay between fluidics and the localized surface plasmon resonance (LSPR) sensing technique, primarily focusing on its applications in the realm of bio/chemical sensing within fluidic environments. Commencing with a foundational overview of LSPR principles from a sensing perspective, we subsequently showcase the development of a streamlined LSPR chip integrated with microfluidic structures. This integration opens the doors to advanced experiments involving fluid dynamics, greatly expanding the scope of LSPR-based research. Our discussions then turn to the practical implementation of LSPR and microfluidics in real-time biosensing, with a specific emphasis on monitoring DNA polymerase activity. Additionally, we illustrate the direct sensing of biological fluids, exemplified by the analysis of urine, while also shedding light on a unique particle assembly process that occurs on LSPR chips. We not only discuss the significance of LSPR sensing but also explore its potential to investigate a plethora of phenomena at liquid-liquid and solid-liquid interfaces. This is particularly noteworthy, as existing transduction methods and sensors fall short in fully comprehending these interfacial phenomena. Concluding our discussion, we present a futuristic perspective that provides insights into potential opportunities emerging at the intersection of fluidics and LSPR sensing.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast BT15 1AP, United Kingdom
- Healthcare
Technology Hub, School of Engineering, Ulster
University, Belfast BT15 1AP, United Kingdom
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics
Unit, Okinawa Institute of Science and Technology
Graduate Univerisity, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
9
|
Zhang JL, Wang TT, Liang WB, Yuan R, Xiao DR. Rigidifying AIEgens in covalent organic framework nanosheets for electrochemiluminescence enhancement: TABE-PZ-CON as a novel emitter for microRNA-21 detection. Anal Chim Acta 2024; 1295:342321. [PMID: 38355235 DOI: 10.1016/j.aca.2024.342321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Enhancing electrochemiluminescence (ECL) properties of luminophores is a hot direction in the current ECL field. Herein, we found that covalent rigidification of the aggregation-induced emission luminogens (AIEgens) TABE (TABE = tetra-(4-aldehyde-(1,1-biphenyl))ethylene) into covalent organic framework nanosheets (TABE-PZ-CON, PZ = piperazine) could result in stronger ECL emission than those of TABE aggregates and TABE monomers. We termed the interesting phenomenon "covalent rigidification-triggered electrochemiluminescence (CRT-ECL) enhancement". The superior ECL performance of TABE-PZ-CON not only because massive TABE luminogens were covalently assembled into the rigid TABE-PZ-CON network, which limited the intramolecular motions of TABE and hampered the radiationless transition, but also because the ultrathin porous TABE-PZ-CON significantly reduced the transportation distance of ions, electrons, and coreactants, which enabled the electrochemical excitation of more TABE luminogens and thus enhanced the ECL efficiency. Bearing in mind the exceptional ECL performance of TABE-PZ-CON, it was utilized as a high-efficient ECL indicator in combination with the DNA walker and duplex-specific nuclease-assisted target recycling amplification strategies to design an "off-on" ECL biosensor for the ultrasensitive assay of microRNA-21, exhibiting a favorable response range (100 aM-1 nM) with an ultralow detection limit of 17.9 aM. Overall, this work offers a valid way to inhibit the intramolecular motions of AIEgens for ECL enhancement, which gives a new vision for building high-performance AIEgen-based ECL materials, thus offering more chances for assembling hypersensitive ECL biosensors.
Collapse
Affiliation(s)
- Jin-Ling Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China; Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, PR China
| | - Tian-Tian Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
10
|
Chen YF, Guo YZ, Xiao S, Chai YQ, Liu JL, Yuan R. Renewable Electrochemiluminescence Biosensor Based on Eu-MOGs as a Highly Efficient Emitter and a DNAzyme-Mediated Dual-drive DNA Walker as a Signal Amplifier for Ultrasensitive Detection of miRNA-222. Anal Chem 2024; 96:4589-4596. [PMID: 38442212 DOI: 10.1021/acs.analchem.3c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.
Collapse
Affiliation(s)
- Yi-Fei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yu-Zhuo Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shuang Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
11
|
Hu S, Xu L, Wu Y, Qin D, Deng B. Novel immunosensor based on electrochemiluminescence inner filter effect and static quenching between fibrillary Ag-MOGs and SiO 2@PANI@AuNPs for enabling the sensitive detection of neuron-specific enolase. Mikrochim Acta 2024; 191:204. [PMID: 38492076 DOI: 10.1007/s00604-024-06294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Metal-organic gels (MOGs) are unique supramolecular gels that are convenient to synthesize. In this work, a cathodic electrochemiluminescence (ECL) system based on Ag-MOGs as a luminophore and K2S2O8 as a co-reactor was developed. The ECL spectrum of the Ag-MOGs overlapped significantly with the strong UV-Vis spectrum of the SiO2@PANI@AuNPs, which effectively quenched the ECL luminescence of the Ag-MOGs. Relying on the inner filter effect between Ag-MOGs and SiO2@PANI@AuNPs, a novel ECL-IFE immunosensor was developed for the detection of neuron-specific enolase (NSE). Under optimal conditions, the ECL signal of the immunosensor displayed excellent linearity over the NSE concentration range of 10 fg/mL-100 ng/mL. The limit of detection (LOD) was 2.6 fg/mL (S/N = 3) with a correlation coefficient R2 of 0.9975. The ECL immunosensor also exhibited excellent stability and reproducibility for the detection of NSE. The results reported provide a feasible concept for the development analytical methods for the detection of other clinically relevant biomarkers.
Collapse
Affiliation(s)
- Shenglan Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Lixin Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China.
| |
Collapse
|
12
|
Dai W, Chen G, Wang X, Zhen S, Huang C, Zhan L, Li Y. Facile synthesis of dual-ligand europium-metal organic gels for ratiometric electrochemiluminescence detecting I27L gene. Biosens Bioelectron 2024; 246:115863. [PMID: 38008056 DOI: 10.1016/j.bios.2023.115863] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Metal organic gels (MOGs) are a new kind of intelligent soft materials with excellent luminescence properties. However, MOGs with dual electrochemiluminescence (ECL) properties have not been reported. In this study, using Eu3+ as metal node, 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine (Hcptpy) and Luminol as organic ligands, a novel dual-ligand Europium-organic gels (Eu-L-H MOGs) were prepared by simple mixing at room temperature. On the one hand, Eu-L-H MOGs could exhibit strong and stable anodic ECL signals in the phosphate buffered saline (PBS) without the addition of co-reactants, which came from the blue emission of Luminol. On the other hand, using K2S2O8 as a cathodic co-reactant, Eu-L-H MOGs produced cathodic signals, which were derived from the red emission of Eu sensitized by Hcptpy through the antenna effect. Based on the independent dual ECL signals of Eu-L-H MOGs, we selected Alexa Flour 430 as the receptor and anodic ECL emission of Eu-L-H MOGs as the donor to construct the ECL resonance energy transfer (ECL-RET) ratio biosensor, which utilized exonuclease III assisted DNA cycle amplification to achieve ultrasensitive detection of the I27L gene. The detection linearity of I27L ranged from 1 fM to 10 nM, with a detection limit as low as 284 aM. This study developed a straightforward technique for obtaining a single luminescent material with dual signals, and further broadened the analytical application of MOGs in the realm of ECL.
Collapse
Affiliation(s)
- Wenjie Dai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Gaoxu Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaoyan Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Li W, Liu W, Yang X, Liang WB, Yuan R, Zhuo Y. Universal Signal Switch Based on a Mesostructured Silica Xerogel-Confined ECL Polymer for Epigenetic Quantification. Anal Chem 2024; 96:1651-1658. [PMID: 38239061 DOI: 10.1021/acs.analchem.3c04564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The development of a highly accurate electrochemiluminescence (ECL) signal switch to avoid nonspecific stimulus responses is currently a significant and challenging task. Here, we constructed a universal signal switch utilizing a luminophore-quencher pair of mesostructured silica xerogel-confined polymer and gold nanoparticles (Au NPs) that can accurately detect low-abundance epigenetic markers in complex sample systems. Notably, the ECL polymer encapsulated in mesostructured silica xerogel acts as a luminophore, which demonstrated a highly specific dependence on the Au NPs-mediated energy transfer quenching. To demonstrate the feasibility, we specifically labeled the 5-hydroxymethylcytosine (5hmC) site on the random sequence using a double-stranded (dsDNA) tag that was skillfully designed with the CRISPR/Cas12a activator and recombinant polymerase amplification (RPA) template. After amplification by RPA, a large amount of dsDNA tag was generated as the activator to initiate the trans-cleavage activity of CRISPR/Cas12a and subsequently activate the signal switch, allowing for precise quantification of 5hmC. The ECL signal switch improves the stability of the luminophore and prevents nonspecific stimulus responses, providing a new paradigm for constructing high-precision biosensors.
Collapse
Affiliation(s)
- Wen Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
14
|
Wang Z, Cao W, Yuan R, Wang H. High AIECL performance of tetraphenylethene derivatives originated from the linear increasing of benzene ring and solvent regulation for sensitive measurement of melatonin. Biosens Bioelectron 2023; 237:115544. [PMID: 37536226 DOI: 10.1016/j.bios.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The efficiency of aggregation-induced electrochemiluminescence (AIECL) in tetraphenylethene (TPE) derivatives were significantly enhanced by combining the regulation of molecular structure and solvent. Firstly, the linear increase of the benzene ring resulted in enhanced molecular aggregation and promoted the electrochemical reaction of the anode, due to increased molecular conjugation and higher lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO). The ECL efficiency of 4,4,4,4-(Ethene-1,1,2,2-tetrayl) tetrakis (([1,1,4,1-terphenyl]-4-carbaldehyde)) (T3) nanoparticles (NPs) with more benzene rings were 5558 times that of 4,4,4,4-(ethene-1,1,2,2-tetrayl) tetrabenzaldehyde (T1) NPs, and its relative ECL efficiency of T3 NPs reached 55.58% compared to the [Ru (bpy)3]2+/tripropylamine (TPrA) system. Furthermore, solvents with different polarities played a crucial role in modulating the degree of molecular aggregation, which also effectively facilitated the AIE process and reduced the aggregation-caused quenching (ACQ) effect caused by excessively dense aggregation. This aspect had often been overlooked in previous AIECL studies. T3 NPs demonstrated optimal ECL performance at fw = 70% (fw was the H2O content in tetrahydrofuran (THF)/H2O), and its ECL efficiency was 232 times greater than fw = 100% and 1853 times greater than fw = 0%. Additionally, it was found that melatonin (MT), one of the hormones widely used to treat insomnia, exhibited antioxidant and free radical scavenging properties, which exerted a significant quenching effect on the ECL of the T3 NPs/TPrA system. Consequently, a sensitive sensing platform was developed for MT with a low detection limit of 8.78 × 10-10 mol L-1, which promoted the application of AIECL in efficient ultra-sensitive biosensing.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Weiwei Cao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Haijun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
15
|
Zhao Y, Wang R, Wang Y, Jie G, Zhou H. Dual-channel molecularly imprinted sensor based on dual-potential electrochemiluminescence of Zn-MOFs for double detection of trace chloramphenicol. Food Chem 2023; 413:135627. [PMID: 36773365 DOI: 10.1016/j.foodchem.2023.135627] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Functionalized metal organometallic frameworks (MOFs) offer unique advantages in the field of sensing due to their versatility and tunable optical properties. In this work, a new dual-potential electrochemiluminescence (ECL) molecularly imprinted sensor using single Zn-MOF signal probe was designed for double detection of trace chloramphenicol (CAP). As dual-signal ECL emitters, Zn-MOFs were firstly modified on the electrode, showing excellent ECL emission in both cathodic and anodic potential. Then the molecularly imprinted polymer (MIP) was electrochemically prepared using o-phenylenediamine (O-PD) and CAP as a template molecule on the Zn-MOFs/electrode. After CAP as a molecular recognition element was eluted and removed from the Zn-MOFs/MIP/electrode, a new ECL sensor was developed for CAP detection by re-adsorption of CAP on the MIP, resulting in "off" of ECL signal. Compared with the conventional single-signal luminophores, Zn-MOFs show more stable and excellent dual ECL signals, which greatly improve the discriminability and accuracy of CAP trace detection. Under the optimal conditions, the linear range of CAP detection was 1 × 10-14-1 × 10-8 M, and the minimum limits of detection (LOD) were 2.1 fM and 2.5 fM for cathode and anode ECL, respectively. This is the first time that Zn-MOFs are used as dual-ECL emitters for molecular sensing systems, and the proposed dual-channel sensing system is flexibly applicable to sensitive detection of other antibiotics, which has broad practical application in food safety.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Runze Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuehui Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
16
|
Wang Y, Gao Y, Gu J, Liu Z, Li N, Liu Z, Li Y. Comprehensive insight into adsorption of chlortetracycline hydrochloride by room-temperature synthesized water-stable Zr-based metal-organic gel/sodium alginate beads. ENVIRONMENTAL RESEARCH 2023:116339. [PMID: 37290628 DOI: 10.1016/j.envres.2023.116339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Chlortetracycline hydrochloride (CTC) is one of the prevailing antibiotic pollutants that harm both environmental ecosystem and human health. Herein, Zr-based metal-organic gels (Zr-MOGs) with lower-coordinated active sites and hierarchically porous structures are fabricated via a facile straightforward room-temperature strategy for CTC treatment. More importantly, we incorporated the powder Zr-MOGs into low-cost sodium alginate (SA) matrix to achieve shaped Zr-based metal-organic gel/SA beads for enhancing the adsorption ability and ameliorating the recyclability. The Langmuir maximum adsorption capacities of Zr-MOGs and Zr-MOG/SA beads could reach 143.9 mg/g and 246.9 mg/g, respectively. What's more, in the manual syringe unit and continuous bead column experiments, Zr-MOG/SA beads could achieve an eluted CTC removal ratio as high as 93.6% and 95.5% in the real water sample, respectively. On top of that, the adsorption mechanisms were put forward as a combination of pore filling, electrostatic interaction, hydrophilic-lipophilic balance, coordination, π-π interaction as well as hydrogen bonding interaction. This study outlines a workable strategy for the facile preparation of candidate adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Yiqi Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Yiwen Gao
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Junhong Gu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, PR China
| | - Zhi Liu
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, PR China
| | - Ningning Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Zhisheng Liu
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, PR China
| | - Yangxue Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Chongqing Research Institute, Jilin University, Chongqing 401123, PR China.
| |
Collapse
|
17
|
Xiang L, Liu LL, Yuan R, Chai YQ. Aggregation-Induced Electrochemiluminescence of Copper Nanoclusters by Regulating Valence State Ratio of Cu(I)/Cu(0) for Ultrasensitive Detection of MicroRNA. Anal Chem 2023; 95:4454-4460. [PMID: 36880263 DOI: 10.1021/acs.analchem.2c05029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In this work, Cu nanoclusters (Cu NCs) with strong aggregation-induced electrochemiluminescence (AIECL) as emitters were used to construct an ECL biosensor for ultrasensitive detection of microRNA-141 (miR-141). Impressively, the ECL signals enhanced with the increased content of Cu(I) in the aggregative Cu NCs. When the ratio of Cu(I)/Cu(0) in aggregative Cu NCs was 3.2, Cu NCs aggregates showed the highest ECL intensity, in which Cu(I) could enhance the cuprophilic Cu(I)···Cu(I) interaction to form rod-shaped aggregates for restricting nonradiative transitions to obviously improve the ECL response. As a result, the ECL intensity of the aggregative Cu NCs was 3.5 times higher than that of the monodispersed Cu NCs. With the aid of the cascade strand displacement amplification (SDA) strategy, an outstanding ECL biosensor was developed to achieve the ultrasensitive detection of miR-141, whose linear range varied from 10 aM to 1 nM with a detection limit of 1.2 aM. This approach opened an avenue to prepare non-noble metal nanomaterials as robust ECL emitters and provided a new idea for detection of biomolecules for diagnosis of disease.
Collapse
Affiliation(s)
- Lian Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin-Lei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
18
|
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
19
|
Wang B, Wang C, Li Y, Liu X, Wu D, Wei Q. Electrochemiluminescence biosensor for cardiac troponin I with signal amplification based on a MoS 2@Cu 2O–Ag-modified electrode and Ce:ZnO-NGQDs. Analyst 2022; 147:4768-4776. [DOI: 10.1039/d2an01341j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive sandwiched electrochemiluminescence (ECL) immunosensor was built for the detection of cTnI. The ECL immunosensor had a low detection limit (2.90 fg mL−1) and wide detection range (10 pg mL−1 to 100 ng mL−1).
Collapse
Affiliation(s)
- Beibei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chao Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|