1
|
Ebrahimi F, Kumari A, Al Abdullah S, Vivero-Escoto JL, Dellinger K. Surface Functionalization of Citrate-Stabilized Gold Nanoparticles with Various Disease-Specific Nonthiolated Aptamers: RSM-Based Optimization for Multifactorial Disease Biomarker Detection. ACS Sens 2025; 10:944-953. [PMID: 39960422 PMCID: PMC11877523 DOI: 10.1021/acssensors.4c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
This study focuses on the surface functionalization of citrate-stabilized gold nanoparticles (AuNPs) with disease-specific aptamers to enhance the detection of multifactorial disease (MD) biomarkers. MDs, characterized by complex pathophysiology involving multiple genetic and environmental factors, present significant diagnostic challenges. Aptamers, which are short, single-stranded oligonucleotides with high specificity and affinity for target molecules, have emerged as promising tools for biomarker detection. By utilizing response surface methodology (RSM) and face-centered central composite design (FCCCD), this research systematically optimized the bioconjugation process of AuNPs with different aptamer sequences, focusing on parameters such as AuNP size and aptamer concentration. The developed protocol in this study demonstrated that aptamer-functionalized AuNPs can be optimized for high yield, bioconjugation efficiency, stability, and surface coverage, making them suitable for diagnostic applications, particularly in surface-enhanced Raman spectroscopy (SERS). The findings provide a foundation for the development of customizable nanoprobes that can be adapted for the detection of various biomarkers associated with MDs, potentially improving early diagnosis and therapeutic outcomes.
Collapse
Affiliation(s)
- Farbod Ebrahimi
- Department
of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Anjali Kumari
- Department
of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Saqer Al Abdullah
- Department
of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Juan L. Vivero-Escoto
- Department
of Chemistry, University of North Carolina
at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Kristen Dellinger
- Department
of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| |
Collapse
|
2
|
Suo M, Fu Y, Wang S, Lin S, Zhang J, Wu C, Yin H, Wang P, Zhang W, Wang XH. Miniaturized Laser Probe for Exosome-Based Cancer Liquid Biopsy. Anal Chem 2024; 96:1965-1976. [PMID: 38267074 DOI: 10.1021/acs.analchem.3c04187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Exosomes have been established as a valuable tool for clinical applications for the purpose of liquid biopsy and therapy. However, the clinical practice of exosomes as cancer biopsy markers is still to a very low extent. Active mode optical microcavity with microlaser emission has aroused as a versatile approach for chemical and biological sensing due to its benefits of larger photon population, increased effective Q-factor, decreased line width, and improved sensitivity. Herein, we report a label-free and precise quantification of exosome vesicles and surface protein profiling of breast cancer exosomes using functionalized active whispering gallery mode (WGM) microlaser probes. A detection limit of 40 exosomes per microresonator was achieved. The proposed system enabled a pilot assay of quantitative exosome analysis in cancer patients' blood with only a few microliters of sample consumption, holding good potential for large-scale cancer liquid biopsy. Multiplexed functionalization of the optical microresonator allowed us to profile cancer exosomal surface markers and distinct subclasses of breast cancer-associated exosomes and monitor drug treatment outcomes. Our findings speak volumes about the advantages of the WGM microlaser sensor, including very small sample consumption, low detection limit, high specificity, and ease of operation, offering a promising means for precious clinical sample analysis.
Collapse
Affiliation(s)
- Mingqian Suo
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yiqian Fu
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Shijia Wang
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Siqi Lin
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jiahui Zhang
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Chunxiao Wu
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Huabing Yin
- Department of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Pu Wang
- Laboratory for Advanced Laser Technology and Applications, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing 100124, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiu-Hong Wang
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing 100124, China
| |
Collapse
|
3
|
Wang Y, Jie H, Ye H, Zhang Y, Li N, Zhuang J. Methylene Blue-Stained Single-Stranded DNA Aptamers as a Highly Efficient Electronic Switch for Quasi-Reagentless Exosomes Detection: An Old Dog with New Tricks. Anal Chem 2023; 95:18166-18173. [PMID: 38037816 DOI: 10.1021/acs.analchem.3c03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Improving the convenience, sensitivity, and cost-effectiveness of electrochemical biosensors is crucial for advancing their clinical diagnostic applications. Herein, we presented an elegant approach to construct electrochemical aptasensors for tumor-derived exosome detection by harnessing the alterable interaction between methylene blue (MB) and DNA aptamer. In detail, the anti-EpCAM aptamer, named SYL3C, was found to exhibit a strong affinity toward MB due to the specific interaction between MB and unbound guanine bases. Thereby, SYL3C could be stained with MB to arouse a strong electrochemical signal on a gold electrode (AuE). Upon binding to EpCAM-positive exosomes, SYL3C underwent a conformational transformation. The resulting conformation, or exosomes-SYL3C complex, not only reduced the accumulation of MB on SYL3C by obstructing the accessibility of guanines to MB but also impeded the transfer of electrons from the bound MB to AuE, leading to a notable decrease in the electrochemical signal. Using MB-stained SYL3C as an electronic switch, an electrochemical aptasensor was readily established for the detection of EpCAM-positive exosome detection. Without the need for signal amplification strategies, expensive auxiliary reagents, and complex operation, this unique signal transduction mechanism alone could endow the aptasensor with ultrahigh sensitivity. A limit of detection (LOD) of 234 particles mL-1 was achieved, surpassing the performance of most reported methods. As a proof of concept, the aptasensor was applied to analyze clinical serum samples and effectively distinguish non-small-cell lung cancer (NSCLC) patients from healthy individuals. As EpCAM exhibits broad expression in exosomes derived from different tumor sources, the developed aptasensor holds promise for diagnosing other tumor types.
Collapse
Affiliation(s)
- Yanhong Wang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Han Jie
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Huajuan Ye
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yuanyuan Zhang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, China
| | - Junyang Zhuang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
4
|
Zhang H, Zhou X, Li X, Gong P, Zhang Y, Zhao Y. Recent Advancements of LSPR Fiber-Optic Biosensing: Combination Methods, Structure, and Prospects. BIOSENSORS 2023; 13:bios13030405. [PMID: 36979617 PMCID: PMC10046874 DOI: 10.3390/bios13030405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 05/31/2023]
Abstract
Fiber-optic biosensors based on localized surface plasmon resonance (LSPR) have the advantages of great biocompatibility, label-free, strong stability, and real-time monitoring of various analytes. LSPR fiber-optic biosensors have attracted extensive research attention in the fields of environmental science, clinical medicine, disease diagnosis, and food safety. The latest development of LSPR fiber-optic biosensors in recent years has focused on the detection of clinical disease markers and the detection of various toxic substances in the environment and the progress of new sensitization mechanisms in LSPR fiber-optic sensors. Therefore, this paper reviews the LSPR fiber-optic sensors from the aspects of working principle, structure, and application fields in biosensors. According to the structure, the sensor can be divided into three categories: traditional ordinary optical fiber, special shape optical fiber, and specialty optical fiber. The advantages and disadvantages of existing and future LSPR fiber-optic biosensors are discussed in detail. Additionally, the prospect of future development of fiber-optic biosensors based on LSPR is addressed.
Collapse
Affiliation(s)
- Hongxin Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xue Zhou
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xuegang Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- The State Key Laboratory of Synthetical Automation for Process Industries, Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Pengqi Gong
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- The State Key Laboratory of Synthetical Automation for Process Industries, Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Yanan Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- The State Key Laboratory of Synthetical Automation for Process Industries, Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Yong Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- The State Key Laboratory of Synthetical Automation for Process Industries, Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| |
Collapse
|