1
|
Jacinto C, Javed Y, Lavorato G, Tarraga WA, Conde BIC, Orozco JM, Picco AS, Garcia J, Dias CSB, Malik S, Sharma SK. Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications. NANOSCALE ADVANCES 2025; 7:2818-2886. [PMID: 40255989 PMCID: PMC12004083 DOI: 10.1039/d5na00195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 04/22/2025]
Abstract
Safe implementation of nanotechnology-based products in biomedical applications necessitates an extensive understanding of the (bio)transformations that nanoparticles undergo in living organisms. The long-term fate in the body is a crucial consideration because it governs potential risks for human health. To accurately predict the life cycle of nanoparticles, their fate after administration into the body-including their (bio)transformations, persistence, and biodegradation-needs to be thoroughly evaluated. Magnetic iron oxide nanoparticles (MIONPs) can enter the body through various routes, including inhalation, ingestion, dermal absorption, and injection. Microscale and nanoscale studies are performed to observe nanomaterial biotransformations and their effect on clinically relevant properties. Researchers are utilizing high-resolution TEM for nanoscale monitoring of the nanoparticles while microscale follow-up approaches comprise quantification tools at the whole organism level and the molecular level. Nanoparticle-cell interactions, including cellular uptake and intracellular trafficking, are key to understanding nanoparticle accumulation in cells and organs. Prolonged accumulation may induce cell stress and nanoparticle toxicity, often mediated through oxidative stress and inflammation. In this review article, the journey of nanoparticles in the body is depicted and their biotransformations and final fate are discussed. Immunohistochemical techniques are particularly valuable in tracking nanoparticle distribution within tissues and assessing their impact at the cellular level. A thorough description of a wide range of characterization techniques is provided to unveil the fate and biotransformations of clinically relevant nanoparticles and to assist in their design for successful biomedical applications.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas 57072-900 Maceió AL Brazil
| | - Yasir Javed
- Department of Physics, University of Agriculture Faisalabad Pakistan
| | - Gabriel Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Wilson A Tarraga
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | | | - Juan Manuel Orozco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Joel Garcia
- Department of Chemistry, De La Salle University Manila Philippines
| | - Carlos Sato Baraldi Dias
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen 76344 Germany
| | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans 45067 France
- Department of Biotechnology, Baba Farid College Bathinda 151001 India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab Bathinda 151401 India
- Department of Physics, Federal University of Maranhão São Luís 65080-805 Brazil
| |
Collapse
|
2
|
Santangelo MC, Lucchesi L, Papa L, Rossi A, Egizzo G, Fratello GL, Favero L, Pineschi M, Di Bussolo V, Di Pietro S. Smart Applications of Lanthanide Chelates-based Luminescent Probes in Bio-imaging. Mini Rev Med Chem 2025; 25:505-520. [PMID: 39886779 DOI: 10.2174/0113895575350677250101060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025]
Abstract
Luminescent Lanthanide (III) (Ln (III)) bioprobes (LLBs) have been extensively used in the last two decades as intracellular molecular probes in bio-imaging for the efficient revelation of analytes, to signal intracellular events (enzymes/protein activity, antigen-antibody interaction), target specific organelles, and determine parameters of particular biophysical interest, to gain important insights on pathologies or diseases. The choice of using a luminescent Ln (III) coordination compound with respect to a common organic fluorophore is intimately connected to how their photophysical sensitization (antenna effect) can be finely tuned and especially triggered to respond (even quantitatively) to a certain biophysical event, condition or analyte. While there are other reviews focused on how to design chromophoric ligands for an efficient sensitization of Ln (III) ions, both in the visible and NIR region, this mini-review is application-driven: it is a small collection of particularly interesting examples where the LLB's emissive information is acquired by imaging the emission intensity and/or the fluorescence lifetime (fluorescence lifetime imaging microscopy, FLIM).
Collapse
Affiliation(s)
| | - Leonardo Lucchesi
- Dipartimento di Biotecnologie, Chimica e Farmacia, dell'Università di Siena, Via Aldo Moro 2, 53100, Siena, Italia
| | - Leonardo Papa
- Laboratoire de Chimie de l'ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, F-69342, France
| | - Annachiara Rossi
- R&D, Fresenius Kabi Ipsum, Via S. Leonardo 23, 45010, Villadose, Italia
| | - Gaia Egizzo
- Institut Català d´Investigació Química (ICIQ), Avinguda dels Països Catalans, 16, Tarragona, 43007, Spagna
| | - Giusy Laura Fratello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, Pisa, 56126, Italia
| | - Lucilla Favero
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, Pisa, 56126, Italia
| | - Mauro Pineschi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, Pisa, 56126, Italia
| | - Valeria Di Bussolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, Pisa, 56126, Italia
| | - Sebastiano Di Pietro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, Pisa, 56126, Italia
| |
Collapse
|
3
|
Dong Z, Song B, Ma H, Gao X, Zhang W, Yuan J. A strategy to enhance the water solubility of luminescent β-diketonate-Europium(III) complexes for time-gated luminescence bioassays. Talanta 2024; 274:126000. [PMID: 38608630 DOI: 10.1016/j.talanta.2024.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Luminescent β-diketonate-europium(III) complexes have been found a wide range of applications in time-gated luminescence (TGL) bioassays, but their poor water solubility is a main problem that limits their effective uses. In this work we propose a simple and general strategy to enhance the water solubility of luminescent β-diketonate-europium(III) complexes that permits facile synthesis and purification. By introducing the fluorinated carboxylic acid group into the structures of β-diketone ligands, two highly water-soluble and luminescent Eu3+ complexes, PBBHD-Eu3+ and CPBBHD-Eu3+, were designed and synthesized. An excellent solubility exceeding 20 mg/mL for PBBHD-Eu3+ was found in a pure aqueous buffer, while it also displayed strong and long-lived luminescence (quantum yield φ = 26%, lifetime τ = 0.49 ms). After the carboxyl groups of PBBHD-Eu3+ were activated, the PBBHD-Eu3+-labeled streptavidin-bovine serum albumin (SA-BSA) conjugate was prepared, and successfully used for the immunoassay of human α-fetoprotein (AFP) and the imaging of an environmental pathogen Giardia lamblia under TGL mode, which demonstrated the practicability of PBBHD-Eu3+ for highly sensitive TGL bioassays. The carboxyl groups of PBBHD can also be easily derivatized with other reactive chemical groups, which enables PBBHD-Eu3+ to meet diverse requirements of biolabeling technique, to provide new opportunities for developing functional europium(III) complex biolabels serving for TGL bioassays.
Collapse
Affiliation(s)
- Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Hua Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian, 116600, China.
| |
Collapse
|
4
|
Su F, Chen S, Liu Y, Zhou J, Du Z, Luo X, Wen S, Jin D. Lanthanide Complex for Single-Molecule Fluorescent in Situ Hybridization and Background-Free Imaging. Anal Chem 2024; 96:4430-4436. [PMID: 38447029 DOI: 10.1021/acs.analchem.3c04530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Traditional single-molecule fluorescence in situ hybridization (smFISH) methods for RNA detection often face sensitivity challenges due to the low fluorescence intensity of the probe. Also, short-lived autofluorescence complicates obtaining clear signals from tissue sections. In response, we have developed an smFISH probe using highly grafted lanthanide complexes to address both concentration quenching and autofluorescence background. Our approach involves an oligo PCR incorporating azide-dUTP, enabling conjugation with lanthanide complexes. This method has proven to be stable, convenient, and cost-effective. Notably, for the mRNA detection in SKBR3 cells, the lanthanide probe group exhibited 2.5 times higher luminescence intensity and detected 3 times more signal points in cells compared with the Cy3 group. Furthermore, we successfully applied the probe to image HER2 mRNA molecules in breast cancer FFPE tissue sections, achieving a 2.7-fold improvement in sensitivity compared to Cy3-based probes. These results emphasize the potential of time-resolved smFISH as a highly sensitive method for nucleic acid detection, free of background fluorescence interference.
Collapse
Affiliation(s)
- Fei Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
| | - Shiyu Chen
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Yuanhua Liu
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
| | - Zhongbo Du
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xiongjian Luo
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China
| |
Collapse
|
5
|
Zhao F, Guan Y, Su F, Du Z, Wen S, Zhang L, Jin D. Lanthanide-Complex-Enhanced Bioorthogonal Branched DNA Amplification. Anal Chem 2024; 96:1556-1564. [PMID: 38214216 DOI: 10.1021/acs.analchem.3c04274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Fluorescence in situ hybridization (FISH) is a widely used technique for detecting intracellular nucleic acids. However, its effectiveness in detecting low-copy nucleic acids is limited due to its low fluorescence intensity and background autofluorescence. To address these challenges, we present here an approach of lanthanide-complex-enhanced bioorthogonal-branched DNA amplification (LEBODA) with high sensitivity for in situ nuclear acid detection in single cells. The approach capitalizes on two levels of signal amplification. First, it utilizes click chemistry to directly link a substantial number of bridge probes to target-recognizing probes, providing an initial boost in signal intensity. Second, it incorporates high-density lanthanide complexes into each bridge probe, enabling secondary amplifications. Compared to the traditional "double Z" probes used in the RNAscope method, LEBODA exhibits 4 times the single enhancement for RNA detection signal with the click chemistry approach. Using SARS-CoV-2 pseudovirus-infected HeLa cells, we demonstrate the superiority in the detection of viral-infected cells in rare populations as low as 20% infectious rate. More encouragingly, the LEBODA approach can be adapted for DNA-FISH and single-molecule RNA-FISH, as well as other hybridization-based signal amplification methods. This adaptability broadens the potential applications of LEBODA in the sensitive detection of biomolecules, indicating promising prospects for future research and practical use.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Guan
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Fei Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Zhongbo Du
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Dayong Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| |
Collapse
|
6
|
Huang Y, Song B, Chen K, Kong D, Yuan J. Time-gated luminescent probes for lysosomal singlet oxygen: Synthesis, characterizations and bioimaging applications. Anal Chim Acta 2024; 1287:342063. [PMID: 38182371 DOI: 10.1016/j.aca.2023.342063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUD Single oxygen (1O2), the molecular oxygen at its excited state, plays a crucial role in the photodynamic therapy (PDT) of some diseases owing to its strong oxidizing property to destroy malignant cells. Although the fluorescent probe technique has proven its powerful application abilities for detection of 1O2 in biological systems, most of the reported fluorescent probes suffered from the interference of background autofluorescence of biological samples. It is clear that the real-time and in situ, background-free fluorescent detection of 1O2 generated in live cells, especially in some organelles, is of great significance for understanding the action mechanism of PDT drugs. RESULTS By introducing a lysosome-anchoring motif, a morpholine moiety, into a 1O2-specifically-reactive terpyridine polyacid ligand, [4'-(9-anthryl)-2,2':6',2″-terpyridine-6,6″-diyl] bis(methylenenitrilo) tetrakis (acetic acid) (ATTA), and chelating with lanthanide ions (Eu3+ or Tb3+), two lanthanide complex-based "turn-on" luminescent probes that can be used for the background-free time-gated luminescent (TGL) detection of lysosomal 1O2, Lyso-ATTA-Eu3+ and Lyso-ATTA-Tb3+, have been developed. The probes exhibit fast luminescence responses (within 2.5 min) towards 1O2 with high selectivity and sensitivity (<0.75 μM) in a wide pH range (4-11). And the excellent lysosome-localization performance of the probes allowed them to be used for the monitoring of endogenous 1O2 in lysosomes, which enabled the variability of lysosomal-1O2 concentrations induced by different photosensitizers to be successfully discriminated. Furthermore, by doping Lyso-ATTA-Eu3+ into the polyethylene glycol (PEG) hydrogel, the smart luminescent sensor film, PEG-Lyso-ATTA-Eu3+, was prepared, and successfully used for the detection of the on-site 1O2 production during the PDT process of psoriatic disease in model mice. SIGNIFICANT Two lysosome-targetable background-free TGL probes for 1O2 were firstly reported. The developed smart luminescent sensor film could be a powerful tool for the clinical monitoring of PDT on skin diseases without using sophisticated and expensive instruments.
Collapse
Affiliation(s)
- Yundi Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|