1
|
Huang H, Wang X, Zhou G, Qian C, Zhou Z, Wang Z, Yang Y. A novel ratiometric fluorescent sensor from modified coumarin-grafted cellulose for precise pH detection in strongly alkaline conditions. Int J Biol Macromol 2024; 262:130066. [PMID: 38340911 DOI: 10.1016/j.ijbiomac.2024.130066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Accurate and convenient monitoring of pH under extreme alkaline conditions is still a challenge. In this work, 4-(3-(7-hydroxy-2-oxo-2H-chromen-3-yl)-3-oxoprop-1-en-1-yl)benzamide (HCB), a coumarin derivative, was grafted onto dialdehyde cellulose (DAC) to obtain a sensor DAC-HCB, which exhibited a ratiometric fluorescent response to the pH of alkaline solutions, resulting in a significant fluorescent color change from yellow to blue (FI459 nm/FI577 nm) at pH 7.5-14. The structure of DAC-HCB was characterized through FT-IR, XRD, XPS, SEM. The pKa of sensor DAC-HCB was 13.16, and the fluorescent intensity ratio FI459 nm/FI577 nm possessed an excellent linear characteristic with pH in the scope of 9.0-13.0. Meanwhile, sensor DAC-HCB showed good selectivity, anti-interference, and fast response time to basic pH, which is an effective fluorescent sensor for examination of pH in alkali circumstance. The recognition mechanism of DAC-HCB to OH- was elucidated with HRMS and density-functional theory (DFT) computational analyses. Sensor DAC-HCB was successfully used for precise detection of environmental water samples pH. This work furnished a new protocol for test strips as a convenient and highly efficient pH detection tool for the high pH environment, and it has great potential for application in environmental monitoring.
Collapse
Affiliation(s)
- Huan Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guocheng Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihang Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiqin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Zhu C, Zuo M, Yang Y, Zhao NN, Wang X, Cui L, Zhang CY. Construction of a Dual-Mode Biosensor with Ferrocene as Both a Signal Enhancer and a Signal Tracer for Electrochemiluminescent and Electrochemical Enantioselective Recognition. Anal Chem 2023; 95:17920-17927. [PMID: 37983085 DOI: 10.1021/acs.analchem.3c04304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
We demonstrate for the first time the construction of a dual-mode biosensor for electrochemiluminescent (ECL) and electrochemical chiral recognition of l- and d-isomers of amino acids, with ferrocene (Fc) as both a signal enhancer and a signal tracer. With the dissolved oxygen as a coreactant, ZnIn2S4 acts as the ECL emitter to generate a weak cathodic ECL signal. Fc can enter into the β-cyclodextrin (β-CD) cavity on ZnIn2S4-modified electrode as a result of host-guest interaction. Since Fc can promote H2O and O2 to produce abundant reactive oxygen species (ROS) (e.g., O2·- and ·OH), the ECL signal of ZnIn2S4 can be further amplified with Fc as a coreaction accelerator. Meanwhile, Fc molecules on the β-CD/ZnIn2S4-modified electrode can be electrochemically oxidized to Fc+ to produce a remarkable oxidation peak current. When l-histidine (l-His) is present, the matching of the l-His configuration with the β-CD cavity leads to the entrance of more l-His into the cavity of β-CD than d-histidine (d-His), and the subsequent competence of l-His with Fc on the Fc/β-CD/ZnIn2S4-modified electrode induces the decrease in both Fc peak current and ZnIn2S4-induced ECL intensity. This dual-mode biosensor can efficiently discriminate l-His from d-His, and it can sensitively monitor l-His with a detection limit of 7.60 pM for ECL mode and 3.70 pM for electrochemical mode. Moreover, this dual-mode biosensor can selectively discriminate l-His from other l- and d-isomers (e.g., threonine, phenylalanine, and glutamic acid), with potential applications in the chiral recognition of nonelectroactive chiral compounds, bioanalysis, and disease diagnosis.
Collapse
Affiliation(s)
- Chenyu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Maoding Zuo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yuncong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiaolei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|