1
|
Liang D, Yu C, Guo C, Lan Y, Chen S, Zhang Y, Du L, Sun D, Li M, Zhao W. Discovery of environment-sensitive fluorescent ligands for SHP2 imaging in living cells and tumor sections. Eur J Med Chem 2025; 290:117573. [PMID: 40168908 DOI: 10.1016/j.ejmech.2025.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
SHP2, a non-receptor protein tyrosine phosphatase, is a key regulator of the cellular signal transduction pathways. Its dysregulation has been associated with the pathogenesis of various diseases, notably cancers. In this study, we developed a series of small-molecule fluorescent probes targeting the allosteric site of SHP2 for the first time, which resulted in high affinity and specific SHP2 binding. These probes exhibited a significant Stokes shift, which was crucial for minimizing the phototoxicity and ensuring superior imaging quality. SHP-PS2, the top-performing probe, exhibited an IC50 of 2.88 μmol/L against SHP2 and a Kd of 1.85 μmol/L in binding studies, with accurate SHP2 localization in living cells and tumor sections. These probes were straightforward to use and were effective tools for conveniently detecting SHP2, which had the potential to advance research in SHP2-related molecular pharmacology and drug discovery.
Collapse
Affiliation(s)
- Dong Liang
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Yu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Chuanhao Guo
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yan Lan
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shiyi Chen
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yu Zhang
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lupei Du
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Deqing Sun
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Minyong Li
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Wei Zhao
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Kulinich AV, Ishchenko AA. Merocyanines: Electronic Structure and Spectroscopy in Solutions, Solid State, and Gas Phase. Chem Rev 2024; 124:12086-12144. [PMID: 39423353 DOI: 10.1021/acs.chemrev.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Merocyanines, owing to their readily tunable electronic structure, are arguably the most versatile functional dyes, with ample opportunities for tailored design via variations of both the donor/acceptor (D/A) end groups and π-conjugated polymethine chain. A plethora of spectral properties, such as strong solvatochromism, high polarizability and hyperpolarizabilities, and sensitizing capacity, motivates extensive studies for their applications in light-converting materials for optoelectronics, nonlinear optics, optical storage, fluorescent probes, etc. Evidently, an understanding of the intrinsic structure-property relationships is a prerequisite for the successful design of functional dyes. For merocyanines, these regularities have been explored for over 70 years, but only in the past three decades have these studies expanded beyond the theory of their color and solvatochromism toward their electronic structure in the ground and excited states. This Review outlines the fundamental principles, essential for comprehension of the variable nature of merocyanines, with the main emphasis on understanding the impact of internal (chemical structure) and external (intermolecular interactions) factors on the electronic symmetry of the D-π-A chromophore. The research on the structure and properties of merocyanines in different media is reviewed in the context of interplay of the three virtual states: nonpolar polyene, ideal polymethine, and zwitterionic polyene.
Collapse
Affiliation(s)
- Andrii V Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| | - Alexander A Ishchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| |
Collapse
|
3
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
4
|
Kulinich AV, Ishchenko AA. Design and Photonics of Merocyanine Dyes. CHEM REC 2024; 24:e202300262. [PMID: 37850545 DOI: 10.1002/tcr.202300262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/21/2023] [Indexed: 10/19/2023]
Abstract
Merocyanines, thanks to their easily adjustable electronic structure, appear to be the most versatile and promising functional dyes. Their D-π-A framework offers ample opportunities for custom design through variations in both donor/acceptor end-groups and the π-conjugated polymethine chain, and leads to a broad range of practical properties, including noticeable solvatochromism, high polarizability/hyperpolarizabilities, and the ability to sensitize various physicochemical processes. Accordingly, merocyanines are applied and extensively studied in various fields, such as light-converting materials for optoelectronics, nonlinear optics, optical storage, solar cells, fluorescent probes, and antitumor agents in photodynamic therapy. This review encompasses both classical and novel more important publications on the structure-property relationships in merocyanines, with particular emphasis on the results by A. I. Kiprianov and his followers in Institute of Organic Chemistry in Kyiv, Ukraine.
Collapse
Affiliation(s)
- Andrii V Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., 02094, Kyiv, Ukraine
| | - Alexander A Ishchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., 02094, Kyiv, Ukraine
| |
Collapse
|
5
|
Sandberg E, Demirbay B, Kulkarni A, Liu H, Piguet J, Widengren J. Fluorescence Bar-Coding and Flowmetry Based on Dark State Transitions in Fluorescence Emitters. J Phys Chem B 2024; 128:125-136. [PMID: 38127267 PMCID: PMC10788918 DOI: 10.1021/acs.jpcb.3c06905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Reversible dark state transitions in fluorophores represent a limiting factor in fluorescence-based ultrasensitive spectroscopy, are a necessary basis for fluorescence-based super-resolution imaging, but may also offer additional, largely orthogonal fluorescence-based readout parameters. In this work, we analyzed the blinking kinetics of Cyanine5 (Cy5) as a bar-coding feature distinguishing Cy5 from rhodamine fluorophores having largely overlapping emission spectra. First, fluorescence correlation spectroscopy (FCS) solution measurements on mixtures of free fluorophores and fluorophore-labeled small unilamellar vesicles (SUVs) showed that Cy5 could be readily distinguished from the rhodamines by its reversible, largely excitation-driven trans-cis isomerization. This was next confirmed by transient state (TRAST) spectroscopy measurements, determining the fluorophore dark state kinetics in a more robust manner, from how the time-averaged fluorescence intensity varies upon modulation of the applied excitation light. TRAST was then combined with wide-field imaging of live cells, whereby Cy5 and rhodamine fluorophores could be distinguished on a whole cell level as well as in spatially resolved, multiplexed images of the cells. Finally, we established a microfluidic TRAST concept and showed how different mixtures of free Cy5 and rhodamine fluorophores and corresponding fluorophore-labeled SUVs could be distinguished on-the-fly when passing through a microfluidic channel. In contrast to FCS, TRAST does not rely on single-molecule detection conditions or a high time resolution and is thus broadly applicable to different biological samples. Therefore, we expect that the bar-coding concept presented in this work can offer an additional useful strategy for fluorescence-based multiplexing that can be implemented on a broad range of both stationary and moving samples.
Collapse
Affiliation(s)
- Elin Sandberg
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Baris Demirbay
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Abhilash Kulkarni
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Haichun Liu
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Joachim Piguet
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Jerker Widengren
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Demirbay B, Baryshnikov G, Haraldsson M, Piguet J, Ågren H, Widengren J. Photo-physical characterization of high triplet yield brominated fluoresceins by transient state (TRAST) spectroscopy. Methods Appl Fluoresc 2023; 11:045011. [PMID: 37726005 DOI: 10.1088/2050-6120/acfb59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Photo-induced dark transient states of fluorophores can pose a problem in fluorescence spectroscopy. However, their typically long lifetimes also make them highly environment sensitive, suggesting fluorophores with prominent dark-state formation yields to be used as microenvironmental sensors in bio-molecular spectroscopy and imaging. In this work, we analyzed the singlet-triplet transitions of fluorescein and three synthesized carboxy-fluorescein derivatives, with one, two or four bromines linked to the anthracence backbone. Using transient state (TRAST) spectroscopy, we found a prominent internal heavy atom (IHA) enhancement of the intersystem crossing (ISC) rates upon bromination, inferred by density functional theory calculations to take place via a higher triplet state, followed by relaxation to the lowest triplet state. A corresponding external heavy atom (EHA) enhancement was found upon adding potassium iodide (KI). Notably, increased KI concentrations still resulted in lowered triplet state buildup in the brominated fluorophores, due to relatively lower enhancements in ISC, than in the triplet decay. Together with an antioxidative effect on the fluorophores, adding KI thus generated a fluorescence enhancement of the brominated fluorophores. By TRAST measurements, analyzing the average fluorescence intensity of fluorescent molecules subject to a systematically varied excitation modulation, dark state transitions within very high triplet yield (>90%) fluorophores can be directly analyzed under biologically relevant conditions. These measurements, not possible by other techniques such as fluorescence correlation spectroscopy, opens for bio-sensing applications based on high triplet yield fluorophores, and for characterization of high triplet yield photodynamic therapy agents, and how they are influenced by IHA and EHA effects.
Collapse
Affiliation(s)
- Baris Demirbay
- Royal Institute of Technology (KTH), Experimental Biomolecular Physics, Department of Applied Physics, Albanova University Center, SE-106 91, Stockholm, Sweden
| | - Glib Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Joachim Piguet
- Royal Institute of Technology (KTH), Experimental Biomolecular Physics, Department of Applied Physics, Albanova University Center, SE-106 91, Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Jerker Widengren
- Royal Institute of Technology (KTH), Experimental Biomolecular Physics, Department of Applied Physics, Albanova University Center, SE-106 91, Stockholm, Sweden
| |
Collapse
|
7
|
Kitamura A, Tornmalm J, Demirbay B, Piguet J, Kinjo M, Widengren J. Trans-cis isomerization kinetics of cyanine dyes reports on the folding states of exogeneous RNA G-quadruplexes in live cells. Nucleic Acids Res 2023; 51:e27. [PMID: 36651281 PMCID: PMC10018373 DOI: 10.1093/nar/gkac1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Guanine (G)-rich nucleic acids are prone to assemble into four-stranded structures, so-called G-quadruplexes. Abnormal GGGGCC repeat elongations, and in particular their folding states, are associated with amyotrophic lateral sclerosis and frontotemporal dementia. Due to methodological constraints however, most studies of G quadruplex structures are restricted to in vitro conditions. Evidence of how GGGGCC repeats form into G-quadruplexes in vivo is sparse. We devised a readout strategy, exploiting the sensitivity of trans-cis isomerization of cyanine dyes to local viscosity and sterical constraints. Thereby, folding states of cyanine-labeled RNA, and in particular G-quadruplexes, can be identified in a sensitive manner. The isomerization kinetics, monitored via fluorescence blinking generated upon transitions between a fluorescent trans isomer and a non-fluorescent cis isomer, was first characterized for RNA with GGGGCC repeats in aqueous solution using fluorescence correlation spectroscopy and transient state (TRAST) monitoring. With TRAST, monitoring the isomerization kinetics from how the average fluorescence intensity varies with laser excitation modulation characteristics, we could then detect folding states of fluorescently tagged RNA introduced into live cells.
Collapse
Affiliation(s)
| | | | - Baris Demirbay
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Joachim Piguet
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
8
|
Daoud A, Cheknane A, Meftah A, Michel Nunzi J, Hilal HS. Dye-sensitized solar cell performance improvement by dye-solvent polarity and redox mediator potential alignment. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Sandberg E, Piguet J, Liu H, Widengren J. Combined Fluorescence Fluctuation and Spectrofluorometric Measurements Reveal a Red-Shifted, Near-IR Emissive Photo-Isomerized Form of Cyanine 5. Int J Mol Sci 2023; 24:ijms24031990. [PMID: 36768309 PMCID: PMC9916991 DOI: 10.3390/ijms24031990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Cyanine fluorophores are extensively used in fluorescence spectroscopy and imaging. Upon continuous excitation, especially at excitation conditions used in single-molecule and super-resolution experiments, photo-isomerized states of cyanines easily reach population probabilities of around 50%. Still, effects of photo-isomerization are largely ignored in such experiments. Here, we studied the photo-isomerization of the pentamethine cyanine 5 (Cy5) by two similar, yet complementary means to follow fluorophore blinking dynamics: fluorescence correlation spectroscopy (FCS) and transient-state (TRAST) excitation-modulation spectroscopy. Additionally, we combined TRAST and spectrofluorimetry (spectral-TRAST), whereby the emission spectra of Cy5 were recorded upon different rectangular pulse-train excitations. We also developed a framework for analyzing transitions between multiple emissive states in FCS and TRAST experiments, how the brightness of the different states is weighted, and what initial conditions that apply. Our FCS, TRAST, and spectral-TRAST experiments showed significant differences in dark-state relaxation amplitudes for different spectral detection ranges, which we attribute to an additional red-shifted, emissive photo-isomerized state of Cy5, not previously considered in FCS and single-molecule experiments. The photo-isomerization kinetics of this state indicate that it is formed under moderate excitation conditions, and its population and emission may thus deserve also more general consideration in fluorescence imaging and spectroscopy experiments.
Collapse
|
10
|
Li Q, Hong J, Feng S, Gong S, Feng G. Polarity-Sensitive Cell Membrane Probe Reveals Lower Polarity of Tumor Cell Membrane and Its Application for Tumor Diagnosis. Anal Chem 2022; 94:11089-11095. [PMID: 35900192 DOI: 10.1021/acs.analchem.2c02312] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is a health threat worldwide, and it is urgent to develop more sensitive cancer detection methods. Herein, a polarity-sensitive cell membrane probe (named COP) was developed for detecting cancer cells and tumors sensitively and selectively at the cell membrane level. The probe shows a strong polarity-dependent fluorescence and excellent cell membrane targeting ability to visualize cell membrane with red fluorescence with a non-washing process. Notably, COP can selectively light up the tumor cell membranes, which reveals that cancer cell membranes have lower polarity than normal cell membranes. The giant unilamellar vesicle model and cell imaging studies proved this. Moreover, COP can effectively and selectively light up tumors. Overall, this work demonstrates that the polarity of the tumor cell membrane is quite different to normal cell membranes, and based on this, sensitive membrane probes can be developed to selectively visualize cancer cells and tumors, which opens up a new way for tumor diagnosis at the cellular level.
Collapse
Affiliation(s)
- Qianhua Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jiaxin Hong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Shumin Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Shengyi Gong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
11
|
Valenta H, Hugelier S, Duwé S, Lo Gerfo G, Müller M, Dedecker P, Vandenberg W. Separation of spectrally overlapping fluorophores using intra-exposure excitation modulation. BIOPHYSICAL REPORTS 2021; 1:100026. [PMID: 36425462 PMCID: PMC9680798 DOI: 10.1016/j.bpr.2021.100026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022]
Abstract
Multicolor fluorescence imaging is an excellent method for the simultaneous visualization of multiple structures, although it is limited by the available spectral window. More labels can be measured by distinguishing these on properties, such as their fluorescence dynamics, but usually these dynamics must be directly resolvable by the instrument. We propose an approach to distinguish emitters over a much broader range of light-induced dynamics by combining fast modulation of the light source with the detection of the time-integrated fluorescence. We demonstrate our method by distinguishing four spectrally overlapping photochromic fluorophores within Escherichia coli bacteria, showing that we can accurately classify all four probes by acquiring just two to four fluorescence images. Our strategy expands the range of probes and processes that can be used for fluorescence multiplexing.
Collapse
|
12
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
13
|
Mondal D, Malik S, Banerjee P, Kundu N, Debnath A, Sarkar N. Modulation of Membrane Fluidity to Control Interfacial Water Structure and Dynamics in Saturated and Unsaturated Phospholipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12423-12434. [PMID: 33035065 DOI: 10.1021/acs.langmuir.0c02736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The structure and dynamics of interfacial water in biological systems regulate the biochemical reactions. But, it is still enigmatic how the behavior of the interfacial water molecule is controlled. Here, we have investigated the effect of membrane fluidity on the structure and dynamics of interfacial water molecules in biologically relevant phopholipid vesicles. This study delineates that modulation of membrane fluidity through interlipid separation and unsaturation not only mitigate membrane rigidity but also disrupt the strong hydrogen bond (H-bond) network around the lipid bilayer interface. As a result, a disorder in H-bonding between water molecules arises several layers beyond the first hydration shell of the polar headgroup, which essentially modifies the interfacial water structure and dynamics. Furthermore, we have also provided evidence of increasing transportation through these modulated membranes, which enhance the membrane mediated isomerization reaction rate.
Collapse
Affiliation(s)
- Dipankar Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302, West Bengal, India
| | - Sheeba Malik
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302, West Bengal, India
| | - Niloy Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302, West Bengal, India
- Environment Research Group, R&D and Scientific Services Department, Tata Steel Ltd., Jamshedpur 831007, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302, West Bengal, India
| |
Collapse
|
14
|
Mahoney DP, Demissie AA, Dickson RM. Optically Activated Delayed Fluorescence through Control of Cyanine Dye Photophysics. J Phys Chem A 2019; 123:3599-3606. [PMID: 30908044 DOI: 10.1021/acs.jpca.9b01333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Merocyanine 540 fluorescence can be enhanced by optically depopulating dark photoisomer states to regenerate the fluorescence-generating manifold of the all-trans isomer. Here, we utilize a competing modulation route, long-wavelength coexcitation of the trans triplet population to not only modulate fluorescence through enhanced ground-state recovery but also generate optically activated delayed fluorescence (OADF) with longer-wavelength co-illumination. Such OADF (∼580 nm) is directly observed with pulsed fluorescence excitation at 532 nm, followed by long-wavelength (637 nm) continuous wave depopulation of the photogenerated triplet by repopulating the emissive S1 state. Such reverse intersystem crossing (RISC) results in ns-lived fluorescence delayed by several microseconds after the initial primary excitation pulse and the prompt 1 ns-lived fluorescence that it induces. The dark state from which OADF is generated decays more rapidly with increased secondary laser intensity, as the optically induced RISC rate increases. This first OADF from organic dyes is observed, as the red secondary laser excites ∼580 nm, <1 ns-lived fluorescence from the previously optically prepared ∼1 μs-lived triplet state. This sequential two-photon, repumped fluorescence yields background-free collection with potential for new high-sensitivity fluorescence imaging schemes.
Collapse
Affiliation(s)
- Daniel P Mahoney
- School of Chemistry & Biochemistry and Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Aida A Demissie
- School of Chemistry & Biochemistry and Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Robert M Dickson
- School of Chemistry & Biochemistry and Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
15
|
Abstract
One of the important features of polymethine (cyanine) dyes is isomerization about one of C–C bonds of the polymethine chain. In this review, spectral properties of the isomers, photoisomer-ization and thermal back isomerization of carbocyanine dyes, mostly meso-substituted carbocy-anine dyes, are considered. meso-Alkyl-substituted thiacarbocyanine dyes are present in polar solvents mainly as cis isomers and, hence, exhibit no photoisomerization, whereas in nonpolar solvents, in which the dyes are in the trans form, photoisomerization takes place. In contrast, the meso-substituted dyes 3,3′-dimethyl-9-phenylthiacarbocyanine and 3,3′-diethyl-9-(2-hydroxy-4-methoxyphenyl)thiacarbocyanine occur as trans isomers and exhibit photoisomerization in both polar and nonpolar solvents. The behavior of these dyes may be ex-plained by the fact that the phenyl ring of the substituent in their molecules can be twisted at some angle, removing the substituent from the plane of the molecule and reducing its steric ef-fect on the conformation of the trans isomer. In some cases, photoisomerization of cis isomers of meso-substituted carbocyanine dyes is also observed (for some meso-alkyl-substituted dyes com-plexed with DNA and chondroitin-4-sulfate; for 3,3′-diethyl-9-methoxythiacarbocyanine in moderate polarity solvents). The cycle photoisomerization–thermal back isomerization of cya-nine dyes can be used in various systems of information storage and deserves further investiga-tion using modern research methods.
Collapse
|
16
|
Gardinier TC, Kohle FF, Peerless JS, Ma K, Turker MZ, Hinckley JA, Yingling YG, Wiesner U. High-Performance Chromatographic Characterization of Surface Chemical Heterogeneities of Fluorescent Organic-Inorganic Hybrid Core-Shell Silica Nanoparticles. ACS NANO 2019; 13:1795-1804. [PMID: 30629425 PMCID: PMC6395521 DOI: 10.1021/acsnano.8b07876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In contrast to small-molar-mass compounds, detailed structural investigations of inorganic core-organic ligand shell hybrid nanoparticles remain challenging. The assessment of batch-reaction-induced heterogeneities of surface chemical properties and their correlation with particle size has been a particularly long-standing issue. Applying a combination of high-performance liquid chromatography (HPLC) and gel permeation chromatography (GPC) to ultra-small (<10 nm diameter) poly(ethylene glycol)-coated (PEGylated) fluorescent core-shell silica nanoparticles, we elucidate here previously unknown surface heterogeneities resulting from varying dye conjugation to nanoparticle silica cores and surfaces. Heterogeneities are predominantly governed by dye charge, as corroborated by molecular dynamics simulations. We demonstrate that this insight enables the development of synthesis protocols to achieve PEGylated and targeting ligand-functionalized PEGylated silica nanoparticles with dramatically improved surface chemical homogeneity, as evidenced by single-peak HPLC chromatograms. Because surface chemical properties are key to all nanoparticle interactions, we expect these methods and fundamental insights to become relevant to a number of systems for applications, including bioimaging and nanomedicine.
Collapse
Affiliation(s)
- Thomas C. Gardinier
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - James S. Peerless
- Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Kai Ma
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Melik Z. Turker
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joshua A. Hinckley
- Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yaroslava G. Yingling
- Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Ulrich Wiesner
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
- Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Corresponding Author: Department of Materials Science and Engineering, Cornell University, 330 Bard Hall, Ithaca, NY 14853, USA. Fax: 607-255-2365
| |
Collapse
|
17
|
Kohle FFE, Hinckley JA, Wiesner UB. Dye Encapsulation in Fluorescent Core-Shell Silica Nanoparticles as Probed by Fluorescence Correlation Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:9813-9823. [PMID: 31819780 PMCID: PMC6901343 DOI: 10.1021/acs.jpcc.9b00297] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Synthetic advances in the formation of ultrasmall (<10 nm) fluorescent poly(ethylene glycol)-coated (PEGylated) core-shell silica nanoparticles (SNPs), enabling improved particle size and surface chemical property control have led to successful clinical translation of SNPs as diagnostic probes in oncology. Despite the success of such probes, details of the dye incorporation and resulting silica architecture are still poorly understood. Here, we employ afterpulse-corrected fluorescence correlation spectroscopy (FCS) to monitor fast fluorescence fluctuations (lag times <10-5 s) of the negatively charged cyanine dye Cy5 as a probe to study such details for dye encapsulation in 5 nm silica cores of PEGylated core-shell SNPs (C dots). Upon deposition of additional silica shells over the silica core we find that the amplitude of photo-induced cis-trans isomerization decreases, suggesting that the Cy5 dyes are located near or on the surface of the original SNP cores. In combination with time correlated fluorescence decay measurements we deduce radiative and non-radiative rates of the Cy5 dye in these particles. Results demonstrate that FCS is a well-suited tool to investigate aspects of the photophysics of fluorescent nanoparticles, and that conformational changes of cyanine dyes like Cy5 are excellent indicators for the local dye environment within ultrasmall SNPs.
Collapse
Affiliation(s)
- Ferdinand F. E. Kohle
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853
- Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Joshua A. Hinckley
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853
- Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Ulrich B. Wiesner
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853
- Department of Materials Science and Engineering, Cornell University, 330 Bard Hall, Ithaca, NY 14853. Fax: 607-255-2365
| |
Collapse
|
18
|
Dutta R, Jana G, Mondal D, Pyne A, Sil S, Chattaraj PK, Sarkar N. The role of viscosity in various dynamical processes of different fluorophores in ionic liquid–cosolvent mixtures: a femtosecond fluorescence upconversion study. Photochem Photobiol Sci 2019; 18:1359-1372. [DOI: 10.1039/c9pp00045c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Literature reports provide ample evidence of the dynamical studies of various fluorophores in different room-temperature ionic liquid (RTIL)–cosolvent mixtures.
Collapse
Affiliation(s)
- Rupam Dutta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Gourhari Jana
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Dipankar Mondal
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Arghajit Pyne
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Sourav Sil
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Pratim K. Chattaraj
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Nilmoni Sarkar
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
19
|
Abstract
One of the important features of polymethine (cyanine) dyes is isomerization around one of C–C bonds of the polymethine chain. In this review, spectral properties of the isomers, photoisomerization and thermal back isomerization of carbocyanine dyes, mostly meso-substituted carbocyanine dyes, are considered. meso-Alkyl-substituted thiacarbocyanine dyes are present in polar solvents mainly as cis isomers and, hence, exhibit no photoisomerization, whereas in nonpolar solvents, in which the dyes are in the trans form, photoisomerization takes place. In contrast, the meso-substituted dyes 3,3′-dimethyl-9-phenylthiacarbocyanine and 3,3′-diethyl-9-(2-hydroxy-4-methoxyphenyl)thiacarbocyanine occur as trans isomers and exhibit photoisomerization in both polar and nonpolar solvents. The behavior of these dyes may be explained by the fact that the phenyl ring of the substituent in their molecules can be twisted at some angle, removing the substituent from the plane of the molecule and reducing its steric effect on the conformation of the trans isomer. In some cases, photoisomerization of cis isomers of meso-substituted carbocyanine dyes is also observed (for some meso-alkyl-substituted dyes complexed with DNA and chondroitin-4-sulfate; for 3,3′-diethyl-9-methoxythiacarbocyanine in moderate polarity solvents). The cycle photoisomerization–thermal back isomerization of cyanine dyes can be used in various systems of information storage and deserves further investigation using modern research methods.
Collapse
|
20
|
Kubánková M, López-Duarte I, Kiryushko D, Kuimova MK. Molecular rotors report on changes in live cell plasma membrane microviscosity upon interaction with beta-amyloid aggregates. SOFT MATTER 2018; 14:9466-9474. [PMID: 30427370 DOI: 10.1039/c8sm01633j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Amyloid deposits of aggregated beta-amyloid Aβ(1-42) peptides are a pathological hallmark of Alzheimer's disease. Aβ(1-42) aggregates are known to induce biophysical alterations in cells, including disruption of plasma membranes. We investigated the microviscosity of plasma membranes upon interaction with oligomeric and fibrillar forms of Aβ(1-42). Viscosity-sensing fluorophores termed molecular rotors were utilised to directly measure the microviscosities of giant plasma membrane vesicles (GPMVs) and plasma membranes of live SH-SY5Y and HeLa cells. The fluorescence lifetimes of membrane-inserting BODIPY-based molecular rotors revealed a decrease in bilayer microviscosity upon incubation with Aβ(1-42) oligomers, while fibrillar Aβ(1-42) did not significantly affect the microviscosity of the bilayer. In addition, we demonstrate that the neuroprotective peptide H3 counteracts the microviscosity change induced by Aβ(1-42) oligomers, suggesting the utility of H3 as a neuroprotective therapeutic agent in neurodegenerative disorders and indicating that ligand-induced membrane stabilisation may be a possible mechanism of neuroprotection during neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Markéta Kubánková
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
21
|
Kundu N, Banik D, Sarkar N. Self-Assembly of Amphiphiles into Vesicles and Fibrils: Investigation of Structure and Dynamics Using Spectroscopy and Microscopy Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11637-11654. [PMID: 29544249 DOI: 10.1021/acs.langmuir.7b04355] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphiphiles are a class of molecules which are known to assemble into a variety of nanostructures. The understanding and applications of self-assembled systems are based on what has been learned from biology. Among the vast number of self-assemblies, in this article, we have described the formation, characterization, and dynamics of two important biologically inspired assemblies: vesicles and fibrils. Vesicles, which can be classified into several categories depending on the sizes and components, are of great interest due to their potential applications in drug delivery and as nanoscale reactors. The structure and dynamics of vesicles can also mimic the complex geometry of the cell membrane. On the other hand, the self-assembly of proteins, peptides, and even single amino acids leads to a number of degenerative disorders. Thus, a complete understanding of these self-assembled systems is necessary. In this article, we discuss recent work on vesicular aggregates composed of phospholipids, fatty acids, and ionic as well as nonionic surfactants and single amino acid-based fibrils such as phenylalanine and tyrosine. Beside the characterization, we also emphasize the excited-state dynamics inside the aggregates for a proper understanding of the organization, reactivity, and heterogeneity of the aggregates.
Collapse
Affiliation(s)
- Niloy Kundu
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| | - Debasis Banik
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| | - Nilmoni Sarkar
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| |
Collapse
|
22
|
Rigler R, Widengren J. Fluorescence-based monitoring of electronic state and ion exchange kinetics with FCS and related techniques: from T-jump measurements to fluorescence fluctuations. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:479-492. [PMID: 29260269 PMCID: PMC5982452 DOI: 10.1007/s00249-017-1271-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/30/2017] [Accepted: 12/03/2017] [Indexed: 11/01/2022]
Abstract
In this review, we give a historical view of how our research in the development and use of fluorescence correlation spectroscopy (FCS) and related techniques has its roots and how it originally evolved from the pioneering work of Manfred Eigen, his colleagues, and coworkers. Work on temperature-jump (T-jump) experiments, conducted almost 50 years ago, led on to the development of the FCS technique. The pioneering work in the 1970s, introducing and demonstrating the concept for FCS, in turn formed the basis for the breakthrough use of FCS more than 15 years later. FCS can be used for monitoring reaction kinetics, based on fluctuations at thermodynamic equilibrium, rather than on relaxation measurements following perturbations. In this review, we more specifically discuss FCS measurements on photodynamic, electronic state transitions in fluorophore molecules, and on proton exchange dynamics in solution and on biomembranes. In the latter case, FCS measurements have proven capable of casting new light on the mechanisms of proton exchange at biological membranes, of central importance to bioenergetics and signal transduction. Finally, we describe the transient-state (TRAST) spectroscopy/imaging technique, sharing features with both relaxation (T-jump) and equilibrium fluctuation (FCS) techniques. TRAST is broadly applicable for cellular and molecular studies, and we briefly outline how TRAST can provide unique information from fluorophore blinking kinetics, reflecting e.g., cellular metabolism, rare molecular encounters, and molecular stoichiometries.
Collapse
Affiliation(s)
- Rudolf Rigler
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics/ Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden.
| |
Collapse
|
23
|
Kulinich A, Ishchenko A, Kukhta I, Mitryukhin L, Kazakov S, Kukhta A. Electron impact excitation of the merocyanine molecule in the gas phase. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Tornmalm J, Widengren J. Label-free monitoring of ambient oxygenation and redox conditions using the photodynamics of flavin compounds and transient state (TRAST) spectroscopy. Methods 2017; 140-141:178-187. [PMID: 29179988 DOI: 10.1016/j.ymeth.2017.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022] Open
Abstract
Transient state (TRAST) monitoring can determine population dynamics of long-lived, dark transient states of fluorescent molecules, detecting only the average fluorescence intensity from a sample, when subject to different excitation pulse trains. Like Fluorescence Correlation Spectroscopy (FCS), TRAST unites the detection sensitivity of fluorescence with the environmental sensitivity of long-lived non-fluorescent states, but does not rely on detection of stochastic fluorescence fluctuations from individual molecules. Relaxed requirements on noise suppression, detection quantum yield and time-resolution of the instrument, as well as on fluorescence brightness of the molecules studied, make TRAST broadly applicable, opening also for investigations based on less bright, auto-fluorescent molecules. In this work, we applied TRAST to study the transient state population dynamics within the auto-fluorescent coenzymes flavin adenine dinucleotide (FAD) and flavin-mononucleotide (FMN). From the experimental TRAST data, we defined state models, and determined rate parameters for triplet state and redox transitions within FMN and FAD, stacking and un-stacking rates of external redox active quenching agents and by the adenine moiety of FAD itself. TRAST experiments were found to be well capable to resolve these transitions in FMN and FAD, and to track how the transitions are influenced by ambient oxygenation and redox conditions. This work demonstrates that TRAST provides a useful tool to follow local oxygenation and redox conditions via FMN and FAD fluorescence, and forms the basis for measurements on flavo-proteins and of redox and metabolic conditions in more complex environments, such as in live cells.
Collapse
Affiliation(s)
- Johan Tornmalm
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Albanova University Center, 106 91 Stockholm, Sweden.
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Albanova University Center, 106 91 Stockholm, Sweden.
| |
Collapse
|
25
|
Kundu N, Roy S, Mukherjee D, Maiti TK, Sarkar N. Unveiling the Interaction between Fatty-Acid-Modified Membrane and Hydrophilic Imidazolium-Based Ionic Liquid: Understanding the Mechanism of Ionic Liquid Cytotoxicity. J Phys Chem B 2017; 121:8162-8170. [PMID: 28756672 DOI: 10.1021/acs.jpcb.7b06231] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ionic liquids (ILs) are considered as "green solvents" for more than 2 decades. However, recent studies suggest that some ILs exhibit greater toxicity compared to common solvents. As a proactive effort to better understand the molecular origin of the cytotoxicity, the work herein presents the systemic characterization of the interaction between model membrane composed of fatty acids and popular imidazolium-based hydrophilic IL. The fusion kinetics between the vesicles demonstrates the swelling of the vesicle. Further, membrane fluidity is determined using the isomerization kinetics of a lipophilic dye, merocyanine-540, and in the presence of IL, the fluidity of the inner water pool of the vesicle is increased. The results can be directly correlated to the cytotoxicity generated by IL in K562 cell, a human erythroleukemic cell line. High-concentration IL ruptures the cell membrane and causes membrane permeabilization. Thus, the results would help to facilitate the rational design of nontoxic ILs.
Collapse
Affiliation(s)
- Niloy Kundu
- Department of Chemistry and ‡Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, WB, India
| | - Shreya Roy
- Department of Chemistry and ‡Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, WB, India
| | - Devdeep Mukherjee
- Department of Chemistry and ‡Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, WB, India
| | - Tapas Kumar Maiti
- Department of Chemistry and ‡Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry and ‡Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, WB, India
| |
Collapse
|
26
|
Zhang B, Tornmalm J, Widengren J, Vakifahmetoglu-Norberg H, Norberg E. Characterization of the Role of the Malate Dehydrogenases to Lung Tumor Cell Survival. J Cancer 2017; 8:2088-2096. [PMID: 28819410 PMCID: PMC5559971 DOI: 10.7150/jca.19373] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cellular compartmentalization of biochemical processes in eukaryotic cells is critical for many functions including shuttling of reducing equivalents across membranes. Although coordination of metabolic flux between different organelles is vital for cell physiology, its impact on tumor cell survival is not well understood. By using an integrative approach, we have dissected the role of the key metabolic enzymes Malate dehydrogenases (MDH1 and MDH2) to the survival of Non-small Cell Lung Carcinomas. Here, we report that while both the MDH1 (cytosolic) and the MDH2 (mitochondrial) enzymes display elevated levels in patients compared to normal counterparts, only high expression of MDH1 is associated with poor prognosis. We further show that the MDH1 enzymatic activity is significantly higher in NSCLC cells than that of MDH2. Accordingly, genetic depletion of MDH1 leads to significantly higher toxicity than depletion of MDH2. These findings provide molecular insights into the metabolic characteristics of the malate isoenzymes and mark MDH1 as a potential therapeutic target in these tumors.
Collapse
Affiliation(s)
- Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, SE-171 77, Stockholm, Sweden
| | - Johan Tornmalm
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Helin Vakifahmetoglu-Norberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, SE-171 77, Stockholm, Sweden
| | - Erik Norberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, SE-171 77, Stockholm, Sweden
| |
Collapse
|
27
|
Hevekerl H, Tornmalm J, Widengren J. Fluorescence-based characterization of non-fluorescent transient states of tryptophan - prospects for protein conformation and interaction studies. Sci Rep 2016; 6:35052. [PMID: 27748381 PMCID: PMC5066179 DOI: 10.1038/srep35052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/15/2016] [Indexed: 02/02/2023] Open
Abstract
Tryptophan fluorescence is extensively used for label-free protein characterization. Here, we show that by analyzing how the average tryptophan fluorescence intensity varies with excitation modulation, kinetics of tryptophan dark transient states can be determined in a simple, robust and reliable manner. Thereby, highly environment-, protein conformation- and interaction-sensitive information can be recorded, inaccessible via traditional protein fluorescence readouts. For verification, tryptophan transient state kinetics were determined under different environmental conditions, and compared to literature data. Conformational changes in a spider silk protein were monitored via the triplet state kinetics of its tryptophan residues, reflecting their exposure to an air-saturated aqueous solution. Moreover, tryptophan fluorescence anti-bunching was discovered, reflecting local pH and buffer conditions, previously observed only by ultrasensitive measurements in highly fluorescent photo-acids. Taken together, the presented approach, broadly applicable under biologically relevant conditions, has the potential to become a standard biophysical approach for protein conformation, interaction and microenvironment studies.
Collapse
Affiliation(s)
- Heike Hevekerl
- Royal Institute of Technology (KTH), Dept Applied Physics, Experimental Biomolecular Physics, Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Johan Tornmalm
- Royal Institute of Technology (KTH), Dept Applied Physics, Experimental Biomolecular Physics, Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Jerker Widengren
- Royal Institute of Technology (KTH), Dept Applied Physics, Experimental Biomolecular Physics, Albanova Univ Center, 106 91 Stockholm, Sweden
| |
Collapse
|
28
|
Bagawath-Singh S, Staaf E, Stoppelenburg AJ, Spielmann T, Kambayashi T, Widengren J, Johansson S. Cytokines Induce Faster Membrane Diffusion of MHC Class I and the Ly49A Receptor in a Subpopulation of Natural Killer Cells. Front Immunol 2016; 7:16. [PMID: 26870035 PMCID: PMC4740373 DOI: 10.3389/fimmu.2016.00016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Cytokines have the potential to drastically augment immune cell activity. Apart from altering the expression of a multitude of proteins, cytokines also affect immune cell dynamics. However, how cytokines affect the molecular dynamics within the cell membrane of immune cells has not been addressed previously. Molecular movement is a vital component of all biological processes, and the rate of motion is, thus, an inherent determining factor for the pace of such processes. Natural killer (NK) cells are cytotoxic lymphocytes, which belong to the innate immune system. By fluorescence correlation spectroscopy, we investigated the influence of cytokine stimulation on the membrane density and molecular dynamics of the inhibitory receptor Ly49A and its ligand, the major histocompatibility complex class I allele H-2Dd, in freshly isolated murine NK cells. H-2Dd was densely expressed and diffused slowly in resting NK cells. Ly49A was expressed at a lower density and diffused faster. The diffusion rate in resting cells was not altered by disrupting the actin cytoskeleton. A short-term stimulation with interleukin-2 or interferon-α + β did not change the surface density of moving H-2Dd or Ly49A, despite a slight upregulation at the cellular level of H-2Dd by interferon-α + β, and of Ly49A by IL-2. However, the molecular diffusion rates of both H-2Dd and Ly49A increased significantly. A multivariate analysis revealed that the increased diffusion was especially marked in a subpopulation of NK cells, where the diffusion rate was increased around fourfold compared to resting NK cells. After IL-2 stimulation, this subpopulation of NK cells also displayed lower density of Ly49A and higher brightness per entity, indicating that Ly49A may homo-cluster to a larger extent in these cells. A faster diffusion of inhibitory receptors could enable a faster accumulation of these molecules at the immune synapse with a target cell, eventually leading to a more efficient NK cell response. It has previously been assumed that cytokines regulate immune cells primarily via alterations of protein expression levels or posttranslational modifications. These findings suggest that cytokines may also modulate immune cell efficiency by increasing the molecular dynamics early on in the response.
Collapse
Affiliation(s)
- Sunitha Bagawath-Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Elina Staaf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Arie Jan Stoppelenburg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Thiemo Spielmann
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology , Stockholm , Sweden
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology , Stockholm , Sweden
| | - Sofia Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
29
|
Quérard J, Le Saux T, Gautier A, Alcor D, Croquette V, Lemarchand A, Gosse C, Jullien L. Kinetics of Reactive Modules Adds Discriminative Dimensions for Selective Cell Imaging. Chemphyschem 2016; 17:1396-413. [PMID: 26833808 DOI: 10.1002/cphc.201500987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/07/2022]
Abstract
Living cells are chemical mixtures of exceptional interest and significance, whose investigation requires the development of powerful analytical tools fulfilling the demanding constraints resulting from their singular features. In particular, multiplexed observation of a large number of molecular targets with high spatiotemporal resolution appears highly desirable. One attractive road to address this analytical challenge relies on engaging the targets in reactions and exploiting the rich kinetic signature of the resulting reactive module, which originates from its topology and its rate constants. This review explores the various facets of this promising strategy. We first emphasize the singularity of the content of a living cell as a chemical mixture and suggest that its multiplexed observation is significant and timely. Then, we show that exploiting the kinetics of analytical processes is relevant to selectively detect a given analyte: upon perturbing the system, the kinetic window associated to response read-out has to be matched with that of the targeted reactive module. Eventually, we introduce the state-of-the-art of cell imaging exploiting protocols based on reaction kinetics and draw some promising perspectives.
Collapse
Affiliation(s)
- Jérôme Quérard
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Thomas Le Saux
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Arnaud Gautier
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Damien Alcor
- INSERM U1065, C3M; 151 route Saint Antoine de Ginestière, BP 2 3194 F-06204 Nice Cedex 3 France
| | - Vincent Croquette
- Ecole Normale Supérieure; Département de Physique and Département de Biologie, Laboratoire de Physique Statistique UMR CNRS-ENS 8550; 24 rue Lhomond F-75005 Paris France
| | - Annie Lemarchand
- Sorbonne Universités; UPMC Univ Paris 06, Laboratoire de Physique Théorique de la Matière Condensée; 4 place Jussieu, case courrier 121 75252 Paris cedex 05 France
- CNRS, UMR 7600 LPTMC; 75005 Paris France
| | - Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS; route de Nozay 91460 Marcoussis France
| | - Ludovic Jullien
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| |
Collapse
|