1
|
Pan H, Klein SM, Gunaratne A, Jarrold MF, Clemmer DE. Dissociation of Macromolecules in Laser-Heated Droplets Monitored by CD-MS. Anal Chem 2025; 97:1419-1425. [PMID: 39772511 PMCID: PMC11800163 DOI: 10.1021/acs.analchem.4c06038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Charge detection mass spectrometry (CD-MS) is used to monitor the dissociation of large (300 kDa to 20 MDa) protein complexes in droplets heated with a 10.6 μm CO2 laser. In this approach, electrospray ionization (ESI) is used to produce charged droplets containing macromolecular complexes. As the droplets travel from the ESI capillary tip to the entrance of the CD-MS instrument, they pass through a variable-power laser field, where they are rapidly heated and dissociate to produce fragments. The approach is illustrated for three model systems: glutamate dehydrogenase (GDH), a 334 kDa hexameric protein complex, which dissociates into protein monomers, dimers, and tetramers; the ∼3 MDa T = 3, and ∼4 MDa T = 4 hepatitis B virus VLPs (virus-like particles) that produce a distribution of protein dimer clusters; and the ∼20 MDa T = 7 human papillomavirus VLP, which dissociates primarily into small capsid protein clusters that are not well-resolved by CD-MS. The fragments produced by in-droplet activation provide information that is useful for characterizing the structures of the intact antecedent complexes. A discussion of the advantages and current limitations of this approach is presented.
Collapse
Affiliation(s)
- Hua Pan
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Shelby M Klein
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Akalanka Gunaratne
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
2
|
Fu S, Wang C, Li J, Yu J, Tang K. Simulation study of a new racetrack FAIMS analyzer to achieve both high-resolution and high-sensitivity. Talanta 2024; 276:126305. [PMID: 38788385 DOI: 10.1016/j.talanta.2024.126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
A new racetrack field-asymmetric waveform ion mobility spectrometry (r-FAIMS) analyzer was developed in this study by combining the existing planar FAIMS (p-FAIMS) and cylindrical FAIMS (c-FAIMS). The ion inlet and outlet regions of r-FAIMS were consisted of a half of c-FAIMS, respectively, and these c-FAIMS were further connected by two p-FAIMS to form a racetrack shaped FAIMS. With such FAIMS working electrode configuration, the ions entering the r-FAIMS can be focused and separated in the first c-FAIMS section, be further separated in the p-FAIMS section with high-resolution, be focused and separated again in the final c-FAIMS section and eventually enter the mass spectrometer or other analyzers for analysis. Detailed simulation by using SIMION software with the default FAIMS user program showed that the ion focusing effect in the first c-FAIMS section ensures the ions entering the following p-FAIMS section as a compact ion packet. This effectively decreases the ion loss caused by Coulomb repulsion and thermal diffusion in p-FAIMS section as compared to the ions being introduced into the p-FAIMS gap randomly in the conventional design. As a result, the ion transmission efficiency of r-FAIMS is at least 3.3-fold higher than the single p-FAIMS under the operating conditions used in this study. The ion trajectory simulation results also showed that the resolving power of r-FAIMS is about the sum of the resolving powers for its c-FAIMS and p-FAIMS sections. The resolving power of r-FAIMS is at least 3.6-fold higher than the single c-FAIMS under the operation conditions used in this study. Therefore, the r-FAIMS can realize both high-resolution and high-sensitive ion mobility separation.
Collapse
Affiliation(s)
- Shoushuai Fu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Chenlu Wang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
3
|
Villacob RA, Feizi N, Beno SC, Solouki T. Collision-Induced Unfolding, Tandem MS, Bottom-up Proteomics, and Interactomics for Identification of Protein Complexes in Native Surface Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:13-30. [PMID: 38095581 DOI: 10.1021/jasms.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Endogenously occurring salts and nonvolatile matrix components in untreated biological surfaces can suppress protein ionization and promote adduct formation, challenging protein identification. Characterization of labile proteins within biological specimens is particularly demanding because additional purification or sample treatment steps can be time-intensive and can disrupt noncovalent interactions. It is demonstrated that the combined use of collision-induced unfolding, tandem mass spectrometry, and bottom-up proteomics improves protein characterization in native surface mass spectrometry (NSMS). This multiprong analysis is achieved by acquiring NSMS, MS/MS, ion mobility (IM), and bottom-up proteomics data from a single surface extracted sample. The validity of this multiprong approach was confirmed by the successful characterization of nine surface-deposited proteins, with molecular weights ranging from 8 to 147 kDa, in two separate mixtures. Bottom-up proteomics provided a list of proteins to match against observed proteins in NSMS and their detected subunits in tandem MS. The method was applied to characterize endogenous proteins from untreated chicken liver samples. The subcapsular liver sampling for NSMS analysis allowed for the detection of endogenous proteins with molecular weights of up to ∼220 kDa. Moreover, using IM-MS, collision cross sections and collision-induced unfolding pathways of enzymatic proteins and protein complexes of up to 145 kDa were obtained.
Collapse
Affiliation(s)
- Raul A Villacob
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Neda Feizi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sarah C Beno
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
4
|
Villacob RA, Egbejiogu BC, Feizi N, Hogan C, Murray KK, Solouki T. Native Mass Spectrometry and Collision-Induced Unfolding of Laser-Ablated Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2215-2225. [PMID: 36346890 DOI: 10.1021/jasms.2c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Infrared laser ablation sample transfer (LAST) was used to collect samples from solid surfaces for mass spectrometry under native spray conditions. Native mass spectrometry was utilized to probe the charge states and collision-induced unfolding (CIU) characteristics of bovine serum albumin (BSA), bovine hemoglobin (BHb), and jack-bean concanavalin A (ConA) via direct injection electrospray, after liquid extraction surface sampling, and after LAST. Each protein was deposited from solution on solid surfaces and laser-ablated for off-line analysis or sampled for online analysis. It was found that the protein ion gas-phase charge-state distributions were comparable for direct infusion, liquid extraction, and laser ablation experiments. Moreover, calculated average collision cross section (CCS) values from direct injection, liquid extraction, and laser ablation experiments were consistent with previously reported literature values. Additionally, an equivalent number of mobility features and conformational turnovers were identified from unfolding pathways from all three methods for all charge states of each protein analyzed in this work. The presented work suggests that laser ablation yields intact proteins (BSA, BHb, and ConA), is compatible with native mass spectrometry, and could be suitable for spatially resolved interrogation of unfolding pathways of proteins.
Collapse
Affiliation(s)
| | | | - Neda Feizi
- Baylor University, Waco, Texas 76706, United States
| | - Cole Hogan
- Baylor University, Waco, Texas 76706, United States
| | - Kermit K Murray
- Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | |
Collapse
|
5
|
Li J, Li L, Gao W, Shi S, Yu J, Tang K. Two-Dimensional FAIMS-IMS Characterization of Peptide Conformers with Resolution Exceeding 1000. Anal Chem 2022; 94:6363-6370. [PMID: 35412805 DOI: 10.1021/acs.analchem.2c00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high-performance field asymmetric waveform ion mobility spectrometry (FAIMS)-IMS-MS platform was developed and applied to explore the conformational diversity of the singly and doubly charged bradykinin (BK + H+)+ and (BK + 2H+)2+ ions. With pure N2 as the FAIMS carrier gas, more than ten conformers of (BK + H+)+ can be resolved using FAIMS-IMS, as compared to only four conformers resolved using either FAIMS or IMS alone. Interestingly, multiple conformers of (BK + H+)+ were found to have completely different values of FAIMS compensation voltage (CV), while their IMS drift times were essentially the same, which were also proven experimentally to not result from the structural annealing by the collisional heating in the ion funnel. The separations in the FAIMS and IMS dimensions are substantially orthogonal, and the overall resolving power of two-dimensional FAIMS-IMS separation is largely proportional to the product of the separation resolving powers of FAIMS and IMS. Using a gas mixture of N2/He to further improve the resolving power of the FAIMS separation, the total resolving powers of the combined FAIMS and IMS separation were estimated to be about 1020 and 1400 for (BK + H+)+ and (BK + 2H+)2+ ions, respectively, which are significantly higher than the resolving power of any ion mobility-based separation techniques demonstrated so far. The combined FAIMS-IMS can thus be a much more powerful technique to explore the structural diversity of biomolecules.
Collapse
Affiliation(s)
- Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo 315211, P. R. China.,Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | - Lei Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo 315211, P. R. China.,School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Wenqing Gao
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo 315211, P. R. China.,School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Shoudong Shi
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo 315211, P. R. China.,Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo 315211, P. R. China.,School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
6
|
Haler JRN, Far J, de la Rosa VR, Kune C, Hoogenboom R, De Pauw E. Using Ion Mobility-Mass Spectrometry to Extract Physicochemical Enthalpic and Entropic Contributions from Synthetic Polymers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:330-339. [PMID: 33269928 DOI: 10.1021/jasms.0c00349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ion mobility-mass spectrometry (IM-MS) experiments are mostly used hand in hand with computational chemistry to correlate mobility measurements to the shape of the ions. Recently, we developed an automatable method to fit IM data obtained with synthetic homopolymers (i.e., collision cross sections; CCS) without resorting to computational chemistry. Here, we further develop the experimental IM data interpretation to explore physicochemical properties of a series of nine polymers and their monomer units by monitoring the relationship between the CCS and the degree of polymerization (DP). Several remarkable points of the CCS evolutions as a function of the DP were found: the first observed DP of each charge state (ΔDPfirst DP), the DPs constituting the structural rearrangements (ΔDPrearr), and the DPs at the half-rearrangement (DPhalf-rearr). Given that these remarkable points do not rely on absolute CCS values, but on their relative evolution, they can be extracted from CCS or raw IM data without accurate IM calibration. Properties such as coordination numbers of the cations, steric hindrance, or side chain flexibility can be compared. This leads to fit parameter predictions based on the nature of the monomer unit. The interpretation of the fit parameters, extracted using solely experimental data, allows a rapid screening of the properties of the polymers.
Collapse
Affiliation(s)
- Jean R N Haler
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
- LIST - Luxembourg Institute of Science and Technology, Materials Research and Technology Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
| | - Victor R de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
| |
Collapse
|
7
|
Bohl J, Sicard C, Rezaei H, Van der Rest G, Halgand F. Evidence of conformational landscape alteration and macromolecular complex formation in the early stages of in vitro human prion protein oxidation. Arch Biochem Biophys 2020; 690:108432. [PMID: 32663474 DOI: 10.1016/j.abb.2020.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022]
Abstract
Oxidative stress is proposed to be one of the major causes of neurodegenerative diseases. Cellular prion protein (PrP) oxidation has been widely studied using chemical reagents such as hydrogen peroxide. However, the experimental conditions used do not faithfully reflect the physiological environment of the cell. With the goal to explore the conformational landscape of PrP under oxidative stress, we conducted a set of experiments combining the careful control of the nature and the amount of ROS produced by a60Co γ-irradiation source. Characterization of the resulting protein species was achieved using a set of analytical techniques. Under our experimental condition hydroxyl radical are the main reactive species produced. The most important findings are i) the formation of molecular assemblies under oxidative stress, ii) the detection of a majority of unmodified monomer mixed with oxidized monomers in these molecular assemblies at low hydroxyl radical concentration, iii) the absence of significant oxidation on the monomer fraction after irradiation. Molecular assemblies are produced in small amounts and were shown to be an octamer. These results suggest either i) an active recruitment of intact monomers by molecular assemblies' oxidized monomers then inducing a structural change of their intact counterparts or ii) an intrinsic capability of intact monomer conformers to spontaneously associate to form stable molecular assemblies when oxidized monomers are present. Finally, abundances of the intact monomer conformers after irradiation were modified. This suggests that monomers of the molecular assemblies exchange structural information with intact irradiated monomer. All these results shed a new light on structural exchange information between PrP monomers under oxidative stress.
Collapse
Affiliation(s)
- Jan Bohl
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France
| | - Cécile Sicard
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France
| | - Human Rezaei
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Guillaume Van der Rest
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France
| | - Frédéric Halgand
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France.
| |
Collapse
|
8
|
Transient multimers modulate conformer abundances of prion protein monomer through conformational selection. Sci Rep 2019; 9:12159. [PMID: 31434938 PMCID: PMC6704068 DOI: 10.1038/s41598-019-48377-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/01/2019] [Indexed: 01/15/2023] Open
Abstract
Prions are known to be involved in neurodegenerative pathologies such as Creutzfeld-Jakob disease. Current models point to a molecular event which rely on a transmissible structural change that leads to the production of β-sheet-rich prion conformer (PrPSc). PrPSc itself has the capability to trigger the structural rearrangement of the ubiquitously present prion (PrPc) substrate in a self-perpetuating cascade. In this article, we demonstrate that recombinant PrPc exists in a conformational equilibrium. The conformers’ abundances were shown to be dependent on PrPc concentration through the formation of transient multimers leading to conformational selection. The study of PrPc mutants that follow dedicated oligomerization pathways demonstrated that the conformers’ relative abundances are modified, thus reinforcing the assertion that the nature of conformers’ interactions orient the oligomerization pathways. Further this result can be viewed as the “signature” of an aborted oligomerization process. This discovery sheds a new light on the possible origin of prion protein diseases, namely that a change in prion protein structure could be transmitted through the formation of transient multimers having different conformer compositions. This could explain the selection of a transient multimeric type that could be viewed as the precursor of PrPSc responsible for structural information transmission, and strain apparition.
Collapse
|
9
|
VanAernum ZL, Gilbert JD, Belov ME, Makarov AA, Horning SR, Wysocki VH. Surface-Induced Dissociation of Noncovalent Protein Complexes in an Extended Mass Range Orbitrap Mass Spectrometer. Anal Chem 2019; 91:3611-3618. [PMID: 30688442 PMCID: PMC6516482 DOI: 10.1021/acs.analchem.8b05605] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Native mass spectrometry continues to develop as a significant complement to traditional structural biology techniques. Within native mass spectrometry (MS), surface-induced dissociation (SID) has been shown to be a powerful activation method for the study of noncovalent complexes of biological significance. High-resolution mass spectrometers have become increasingly adapted to the analysis of high-mass ions and have demonstrated their importance in understanding how small mass changes can affect the overall structure of large biomolecular complexes. Herein we demonstrate the first adaptation of surface-induced dissociation in a modified high-mass-range, high-resolution Orbitrap mass spectrometer. The SID device was designed to be installed in the Q Exactive series of Orbitrap mass spectrometers with minimal disruption of standard functions. The performance of the SID-Orbitrap instrument has been demonstrated with several protein complex and ligand-bound protein complex systems ranging from 53 to 336 kDa. We also address the effect of ion source temperature on native protein-ligand complex ions as assessed by SID. Results are consistent with previous findings on quadrupole time-of-flight instruments and suggest that SID coupled to high-resolution MS is well-suited to provide information on the interface interactions within protein complexes and ligand-bound protein complexes.
Collapse
|
10
|
Hernychová L, Rosůlek M, Kádek A, Mareška V, Chmelík J, Adámková L, Grobárová V, Šebesta O, Kukačka Z, Skála K, Spiwok V, Černý J, Novák P. The C-type lectin-like receptor Nkrp1b: Structural proteomics reveals features affecting protein conformation and interactions. J Proteomics 2019; 196:162-172. [DOI: 10.1016/j.jprot.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
|
11
|
MS methods to study macromolecule-ligand interaction: Applications in drug discovery. Methods 2018; 144:152-174. [PMID: 29890284 DOI: 10.1016/j.ymeth.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction of small compounds (i.e. ligands) with macromolecules or macromolecule assemblies (i.e. targets) is the mechanism of action of most of the drugs available today. Mass spectrometry is a popular technique for the interrogation of macromolecule-ligand interactions and therefore is also widely used in drug discovery and development. Thanks to its versatility, mass spectrometry is used for multiple purposes such as biomarker screening, identification of the mechanism of action, ligand structure optimization or toxicity assessment. The evolution and automation of the instruments now allows the development of high throughput methods with high sensitivity and a minimized false discovery rate. Herein, all these approaches are described with a focus on the methods for studying macromolecule-ligand interaction aimed at defining the structure-activity relationships of drug candidates, along with their mechanism of action, metabolism and toxicity.
Collapse
|
12
|
Van der Rest G, Halgand F. Size Exclusion Chromatography-Ion Mobility-Mass Spectrometry Coupling: a Step Toward Structural Biology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2519-2522. [PMID: 28933014 DOI: 10.1007/s13361-017-1810-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Noncovalent interactions are essential for the structural organization of biomacromolecules in cells. For this reason, the study of the biophysical, dynamic, and architectural interactions among biomacromolecules is essential. Since mass spectrometry requires compatible solutions while preserving the noncovalent bonding network, we envisioned that size exclusion chromatography coupled with ion mobility and mass spectrometry would be a valuable technique to desalt the initial sample and provide solution and gas-phase structural information in a single stage experiment. Such coupling allowed obtaining information on solution protein complex composition with SEC separation and on authenticity and purity with IMS-MS. Our study demonstrated that such coupling is compatible, useful, as well as suitable for a routine analysis, in pharmaceutical industry, for example. Mobility data were reliable and injected standards allowed calibrating the collision cross-section scale. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Guillaume Van der Rest
- Université Paris Sud-CNRS, UMR 8000, Rue Henri Becquerel, Bâtiment 201 P 2, 91405, Orsay, France
| | - Frédéric Halgand
- Université Paris Sud-CNRS, UMR 8000, Rue Henri Becquerel, Bâtiment 201 P 2, 91405, Orsay, France.
| |
Collapse
|
13
|
Investigating the structural transitions of proteins during dissolution by mass spectrometry. Talanta 2017; 164:418-426. [DOI: 10.1016/j.talanta.2016.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
|
14
|
Buckley DT, Hogan CJ. Determination of the transfer function of an atmospheric pressure drift tube ion mobility spectrometer for nanoparticle measurements. Analyst 2017; 142:1800-1812. [DOI: 10.1039/c7an00328e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new method is introduced to determine the transfer/transmission function of a drift tube ion mobility spectrometer.
Collapse
Affiliation(s)
- David T. Buckley
- Department of Mechanical Engineering
- University of Minnesota
- Minneapolis
- USA
| | | |
Collapse
|
15
|
Garabedian A, Butcher D, Lippens JL, Miksovska J, Chapagain PP, Fabris D, Ridgeway ME, Park MA, Fernandez-Lima F. Structures of the kinetically trapped i-motif DNA intermediates. Phys Chem Chem Phys 2016; 18:26691-26702. [PMID: 27711445 PMCID: PMC5652045 DOI: 10.1039/c6cp04418b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the present work, the conformational dynamics and folding pathways of i-motif DNA were studied in solution and in the gas-phase as a function of the solution pH conditions using circular dichroism (CD), photoacoustic calorimetry analysis (PAC), trapped ion mobility spectrometry-mass spectrometry (TIMS-MS), and molecular dynamics (MD). Solution studies showed at thermodynamic equilibrium the existence of a two-state folding mechanism, whereas during the pH = 7.0 → 4.5 transition a fast and slow phase (ΔHfast + ΔHslow = 43 ± 7 kcal mol-1) with a volume change associated with the formation of hemiprotonated cytosine base pairs and concomitant collapse of the i-motif oligonucleotide into a compact conformation were observed. TIMS-MS experiments showed that gas-phase, kinetically trapped i-motif DNA intermediates produced by nanoESI are preserved, with relative abundances depending on the solution pH conditions. In particular, a folded i-motif DNA structure was observed in nanoESI-TIMS-MS for low charge states in both positive and negative ion mode (e.g., z = ±3 to ±5) at low pH conditions. As solution pH increases, the cytosine neutralization leads to the loss of cytosine-cytosine+ (C·CH+) base pairing in the CCC strands and in those conditions we observe partially unfolded i-motif DNA conformations in nanoESI-TIMS-MS for higher charge states (e.g., z = -6 to -9). Collisional induced activation prior to TIMS-MS showed the existence of multiple local free energy minima, associated with the i-motif DNA unfolding at z = -6 charge state. For the first time, candidate gas-phase structures are proposed based on mobility measurements of the i-motif DNA unfolding pathway. Moreover, the inspection of partially unfolded i-motif DNA structures (z = -7 and z = -8 charge states) showed that the presence of inner cations may or may not induce conformational changes in the gas-phase. For example, incorporation of ammonium adducts does not lead to major conformational changes while sodium adducts may lead to the formation of sodium mediated bonds between two negatively charged sides inducing the stabilization towards more compact structures in new local, free energy minima in the gas-phase.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA.
| | - David Butcher
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA.
| | | | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA. and Biomolecular Science Institute, Florida International University, Miami, USA
| | - Prem P Chapagain
- Biomolecular Science Institute, Florida International University, Miami, USA and Department of Physics, Florida International University, Miami, USA
| | | | | | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA. and Biomolecular Science Institute, Florida International University, Miami, USA
| |
Collapse
|
16
|
Kölbel K, Warnke S, Seo J, von Helden G, Moretti R, Meiler J, Pagel K, Sinz A. Conformational Shift of a β-Hairpin Peptide upon Complex Formation with an Oligo-proline Peptide Studied by Mass Spectrometry. ChemistrySelect 2016; 1:3651-3656. [PMID: 30547079 DOI: 10.1002/slct.201600934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
So-called super-secondary structures such as the β-hairpin, studied here, form an intermediate hierarchy between secondary and tertiary structures of proteins. Their sequence-derived 'pure' peptide backbone conformation is combined with 'remote' interstrand or interresidue contacts reminiscent of the 3D-structure of full-length proteins. This renders them ideally suited for studying potential nucleation sites of protein folding reactions as well as intermolecular interactions. But β-hairpins do not merely serve as model systems; their unique structure characteristics warrant a central role in structural studies on their own. In this study we applied photo cross-linking in combination with high-resolution mass spectrometry and computational modeling as well as with ion mobility-mass spectrometry to elucidate these structural properties. Using variants of a known β-hairpin representative, the so-called trpzip peptide and its ligands, we found evidence for a conformational transition of the β-hairpin and its impact on ligand binding.
Collapse
Affiliation(s)
- Knut Kölbel
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute for Pharmacy, Martin-Luther-Universit t Halle-Wittenberg W.-Langenbeck-Straße 4, 06120 Halle (Germany).,Chemistry Department Universiteit Antwerpen Campus Groenenborger, Groenenborgerlaan 171 G.V. 416, 2020 Antwer-pen (Belgi)
| | - Stephan Warnke
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-614195 Berlin (Germany)
| | - Jongcheol Seo
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-614195 Berlin (Germany)
| | - Gert von Helden
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-614195 Berlin (Germany)
| | - Rocco Moretti
- Department of Chemistry and the Center for Structural Biology Vanderbilt University 465 21Ave South BIOSCi/MRBIII Nashville TN (USA)
| | - Jens Meiler
- Department of Chemistry and the Center for Structural Biology Vanderbilt University 465 21Ave South BIOSCi/MRBIII Nashville TN (USA)
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-614195 Berlin (Germany).,Freie Universit t Berlin Institute of Chemistry and Biochemistry Takustraße 3 14195 Berlin (Germany)
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute for Pharmacy, Martin-Luther-Universit t Halle-Wittenberg W.-Langenbeck-Straße 4, 06120 Halle (Germany)
| |
Collapse
|
17
|
Mikhailov VA, Liko I, Mize TH, Bush MF, Benesch JLP, Robinson CV. Infrared Laser Activation of Soluble and Membrane Protein Assemblies in the Gas Phase. Anal Chem 2016; 88:7060-7. [PMID: 27328020 DOI: 10.1021/acs.analchem.6b00645] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Collision-induced dissociation (CID) is the dominant method for probing intact macromolecular complexes in the gas phase by means of mass spectrometry (MS). The energy obtained from collisional activation is dependent on the charge state of the ion and the pressures and potentials within the instrument: these factors limit CID capability. Activation by infrared (IR) laser radiation offers an attractive alternative as the radiation energy absorbed by the ions is charge-state-independent and the intensity and time scale of activation is controlled by a laser source external to the mass spectrometer. Here we implement and apply IR activation, in different irradiation regimes, to study both soluble and membrane protein assemblies. We show that IR activation using high-intensity pulsed lasers is faster than collisional and radiative cooling and requires much lower energy than continuous IR irradiation. We demonstrate that IR activation is an effective means for studying membrane protein assemblies, and liberate an intact V-type ATPase complex from detergent micelles, a result that cannot be achieved by means of CID using standard collision energies. Notably, we find that IR activation can be sufficiently soft to retain specific lipids bound to the complex. We further demonstrate that, by applying a combination of collisional activation, mass selection, and IR activation of the liberated complex, we can elucidate subunit stoichiometry and the masses of specifically bound lipids in a single MS experiment.
Collapse
Affiliation(s)
- Victor A Mikhailov
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | - Idlir Liko
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | - Todd H Mize
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | - Matthew F Bush
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | - Justin L P Benesch
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
18
|
Cleary SP, Thompson AM, Prell JS. Fourier Analysis Method for Analyzing Highly Congested Mass Spectra of Ion Populations with Repeated Subunits. Anal Chem 2016; 88:6205-13. [DOI: 10.1021/acs.analchem.6b01088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sean P. Cleary
- Department
of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Avery M. Thompson
- Department
of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - James S. Prell
- Department
of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
19
|
Zhang H, Liu H, Lu Y, Wolf NR, Gross ML, Blankenship RE. Native mass spectrometry and ion mobility characterize the orange carotenoid protein functional domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:734-9. [PMID: 26921809 DOI: 10.1016/j.bbabio.2016.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 01/05/2023]
Abstract
Orange Carotenoid Protein (OCP) plays a unique role in protecting many cyanobacteria from light-induced damage. The active form of OCP is directly involved in energy dissipation by binding to the phycobilisome (PBS), the major light-harvesting complex in cyanobacteria. There are two structural modules in OCP, an N-terminal domain (NTD), and a C-terminal domain (CTD), which play different functional roles during the OCP-PBS quenching cycle. Because of the quasi-stable nature of active OCP, structural analysis of active OCP has been lacking compared to its inactive form. In this report, partial proteolysis was used to generate two structural domains, NTD and CTD, from active OCP. We used multiple native mass spectrometry (MS) based approaches to interrogate the structural features of the NTD and the CTD. Collisional activation and ion mobility analysis indicated that the NTD releases its bound carotenoid without forming any intermediates and the CTD is resistant to unfolding upon collisional energy ramping. The unfolding intermediates observed in inactive intact OCP suggest that it is the N-terminal extension and the NTD-CTD loop that lead to the observed unfolding intermediates. These combined approaches extend the knowledge of OCP photo-activation and structural features of OCP functional domains. Combining native MS, ion mobility, and collisional activation promises to be a sensitive new approach for studies of photosynthetic protein-pigment complexes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yue Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nathan R Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|