1
|
Lv T, Liu J, Li F, Ma S, Wei X, Li X, Han C, Wang X. Label-Free and Ultrasensitive Detection of Cartilage Acidic Protein 1 in Osteoarthritis Using a Single-Walled Carbon Nanotube Field-Effect Transistor Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36804-36810. [PMID: 38970471 DOI: 10.1021/acsami.4c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA), a prevalent degenerative joint disease, significantly affects the well-being of afflicted individuals and compromises the standard functionality of human joints. The emerging biomarker, Cartilage acidic protein 1 (CRTAC1), intricately associates with OA initiation and serves as a prognostic indicator for the trajectory toward joint replacement. However, existing diagnostic methods for CRTAC1 are hampered by the limited abundance, thus restricting the precision and specificity. Herein, a novel approach utilizing a single-walled carbon nanotube field-effect transistor (SWCNTs FET) biosensor is reported for the direct label-free detection of CRTAC1. High-purity semiconducting carbon nanotube films, functionalized with antibodies of CRTAC1, provide excellent electrical and sensing properties. The SWCNTs FET biosensor exhibits high sensitivity, notable reproducibility, and a wide linear detection range (1 fg/mL to 100 ng/mL) for CRTAC1 with a theoretical limit of detection (LOD) of 0.2 fg/mL. Moreover, the SWCNTs FET biosensor is capable of directly detecting human serum samples, showing excellent sensing performance in differentiating clinical samples from OA patients and healthy populations. Comparative analysis with traditional enzyme-linked immunosorbent assay (ELISA) reveals that the proposed biosensor demonstrates faster detection speeds, higher sensitivity/accuracy, and lower errors, indicating high potential for the early OA diagnosis. Furthermore, the SWCNTs FET biosensor has good scalability for the combined diagnosis and measurement of multiple disease markers, thereby significantly expanding the application of SWCNTs FETs in biosensing and clinical diagnostics.
Collapse
Affiliation(s)
- Tengbo Lv
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiale Liu
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shenhui Ma
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Xianqi Wei
- School of Science, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin Li
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chuanyu Han
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoli Wang
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Mladenović M, Jarić S, Mundžić M, Pavlović A, Bobrinetskiy I, Knežević NŽ. Biosensors for Cancer Biomarkers Based on Mesoporous Silica Nanoparticles. BIOSENSORS 2024; 14:326. [PMID: 39056602 PMCID: PMC11274377 DOI: 10.3390/bios14070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) exhibit highly beneficial characteristics for devising efficient biosensors for different analytes. Their unique properties, such as capabilities for stable covalent binding to recognition groups (e.g., antibodies or aptamers) and sensing surfaces, open a plethora of opportunities for biosensor construction. In addition, their structured porosity offers capabilities for entrapping signaling molecules (dyes or electroactive species), which could be released efficiently in response to a desired analyte for effective optical or electrochemical detection. This work offers an overview of recent research studies (in the last five years) that contain MSNs in their optical and electrochemical sensing platforms for the detection of cancer biomarkers, classified by cancer type. In addition, this study provides an overview of cancer biomarkers, as well as electrochemical and optical detection methods in general.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikola Ž. Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.M.); (S.J.); (M.M.); (A.P.)
| |
Collapse
|
3
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
4
|
Lou C, Yang H, Hou Y, Huang H, Qiu J, Wang C, Sang Y, Liu H, Han L. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307051. [PMID: 37844125 DOI: 10.1002/adma.202307051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cellular processes are mechanisms carried out at the cellular level that are aimed at guaranteeing the stability of the organism they comprise. The investigation of cellular processes is key to understanding cell fate, understanding pathogenic mechanisms, and developing new therapeutic technologies. Microfluidic platforms are thought to be the most powerful tools among all methodologies for investigating cellular processes because they can integrate almost all types of the existing intracellular and extracellular biomarker-sensing methods and observation approaches for cell behavior, combined with precisely controlled cell culture, manipulation, stimulation, and analysis. Most importantly, microfluidic platforms can realize real-time in situ detection of secreted proteins, exosomes, and other biomarkers produced during cell physiological processes, thereby providing the possibility to draw the whole picture for a cellular process. Owing to their advantages of high throughput, low sample consumption, and precise cell control, microfluidic platforms with real-time in situ monitoring characteristics are widely being used in cell analysis, disease diagnosis, pharmaceutical research, and biological production. This review focuses on the basic concepts, recent progress, and application prospects of microfluidic platforms for real-time in situ monitoring of biomarkers in cellular processes.
Collapse
Affiliation(s)
- Chengming Lou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ying Hou
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Haina Huang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|
5
|
Chen S, Bashir R. Advances in field-effect biosensors towards point-of-use. NANOTECHNOLOGY 2023; 34:492002. [PMID: 37625391 PMCID: PMC10523595 DOI: 10.1088/1361-6528/acf3f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
The future of medical diagnostics calls for portable biosensors at the point of care, aiming to improve healthcare by reducing costs, improving access, and increasing quality-what is called the 'triple aim'. Developing point-of-care sensors that provide high sensitivity, detect multiple analytes, and provide real time measurements can expand access to medical diagnostics for all. Field-effect transistor (FET)-based biosensors have several advantages, including ultrahigh sensitivity, label-free and amplification-free detection, reduced cost and complexity, portability, and large-scale multiplexing. They can also be integrated into wearable or implantable devices and provide continuous, real-time monitoring of analytesin vivo, enabling early detection of biomarkers for disease diagnosis and management. This review analyzes advances in the sensitivity, parallelization, and reusability of FET biosensors, benchmarks the limit of detection of the state of the art, and discusses the challenges and opportunities of FET biosensors for future healthcare applications.
Collapse
Affiliation(s)
- Sihan Chen
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Rashid Bashir
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| |
Collapse
|
6
|
Ko A, Liao C. Paper-based colorimetric sensors for point-of-care testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4377-4404. [PMID: 37641934 DOI: 10.1039/d3ay00943b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
By eliminating the need for sample transportation and centralized laboratory analysis, point-of-care testing (POCT) enables on-the-spot testing, with results available within minutes, leading to improved patient management and overall healthcare efficiency. Motivated by the rapid development of POCT, paper-based colorimetric sensing, a powerful analytical technique that exploits the changes in color or absorbance of a chemical species to detect and quantify analytes of interest, has garnered increasing attention. In this review, we strive to provide a bird's eye view of the development landscape of paper-based colorimetric sensors that harness the unique properties of paper to create low-cost, easy-to-use, and disposable analytical devices, thematically covering both fundamental aspects and categorized applications. In the end, we authors summarized the review with the remaining challenges and emerging opportunities. Hopefully, this review will ignite new research endeavors in the realm of paper-based colorimetric sensors.
Collapse
Affiliation(s)
- Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
- Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
7
|
Eswaran M, Chokkiah B, Pandit S, Rahimi S, Dhanusuraman R, Aleem M, Mijakovic I. A Road Map toward Field-Effect Transistor Biosensor Technology for Early Stage Cancer Detection. SMALL METHODS 2022; 6:e2200809. [PMID: 36068169 DOI: 10.1002/smtd.202200809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Field effect transistor (FET)-based nanoelectronic biosensor devices provide a viable route for specific and sensitive detection of cancer biomarkers, which can be used for early stage cancer detection, monitoring the progress of the disease, and evaluating the effectiveness of therapies. On the road to implementation of FET-based devices in cancer diagnostics, several key issues need to be addressed: sensitivity, selectivity, operational conditions, anti-interference, reusability, reproducibility, disposability, large-scale production, and economic viability. To address these well-known issues, significant research efforts have been made recently. An overview of these efforts is provided here, highlighting the approaches and strategies presently engaged at each developmental stage, from the design and fabrication of devices to performance evaluation and data analysis. Specifically, this review discusses the multistep fabrication of FETs, choice of bioreceptors for relevant biomarkers, operational conditions, measurement configuration, and outlines strategies to improve the sensing performance and reach the level required for clinical applications. Finally, this review outlines the expected progress to the future generation of FET-based diagnostic devices and discusses their potential for detection of cancer biomarkers as well as biomarkers of other noncommunicable and communicable diseases.
Collapse
Affiliation(s)
- Muthusankar Eswaran
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Bavatharani Chokkiah
- Nanoelectrochemistry Lab, Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, India
| | - Santosh Pandit
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Ragupathy Dhanusuraman
- Nanoelectrochemistry Lab, Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, India
| | - Mahaboobbatcha Aleem
- Department of Electrical Engineering, City College of New York, New York, 10031, USA
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
8
|
Jia H, Li J, Yang L, Fan D, Kuang X, Sun X, Wei Q, Ju H. Hollow Double-Shell CuCo 2O 4@Cu 2O Heterostructures as a Highly Efficient Coreaction Accelerator for Amplifying NIR Electrochemiluminescence of Gold Nanoclusters in Immunoassay. Anal Chem 2022; 94:7132-7139. [PMID: 35522579 DOI: 10.1021/acs.analchem.2c01162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolution of electrochemiluminescence (ECL) emission amplified by coreaction accelerator in near-infrared (NIR) area has been overwhelmingly anticipated for ultrasensitive detection of disease biomarkers. Herein, the hollow double-shell CuCo2O4@Cu2O (HDS-CuCo2O4@Cu2O) heterostructures were conveniently prepared and utilized as an attractive coreaction accelerator to improve the NIR ECL performance of gold nanoclusters (AuNCs) for the first time. Benefiting from perfect-matched lattice spacing, unique Cu2O nanoparticles (NPs) were formed in situ on the layered-hollow CuCo2O4 nanospheres (NSs) to obtain HDS-CuCo2O4@Cu2O heterostructures. The formed heterojunctions supplied shorter charge transfer distance and better interfacial charge transfer efficiency as well as more effective separation performance. Consequently, HDS-CuCo2O4@Cu2O heterostructures as an admirable electroactive substrate could significantly promote the formation of sufficient coreactant intermediate radicals to react with AuNCs cationic radicals, realizing about 3-folds stronger NIR ECL response than that of individual AuNCs. In addition, the AuNCs templated by l-methionine (l-Met) exhibited NIR ECL emission around 830 nm, which could decrease the photochemical damage to even realize a nondestructive detection with improved susceptibility and circumambient adaptability. Subsequently, a well site-oriented fixation strategy utilizing HWRGWVC heptapeptide as the specific antibody immobilizer was introduced to further preserve the bioactivity of antibody on the HDS-CuCo2O4@Cu2O and AuNCs surface along with enhancing the incubation performance markedly. In view of the progressive sensing mechanism, a NIR immunosensor was obtained for the ultrasensitive analysis of CYFRA21-1, which achieved a broad linear ranging from 2 fg/mL to 50 ng/mL and a low limit of detection (LOD) of 0.67 fg/mL (S/N = 3).
Collapse
Affiliation(s)
- Hongying Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jingshuai Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
9
|
Mohan B, Kumar S, Xi H, Ma S, Tao Z, Xing T, You H, Zhang Y, Ren P. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron 2022; 197:113738. [PMID: 34740120 DOI: 10.1016/j.bios.2021.113738] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
In the health domain, a major challenge is the detection of diseases using rapid and cost-effective techniques. Most of the existing cancer detection methods show poor sensitivity and selectivity and are time consuming with high cost. To overcome this challenge, we analyzed porous fabricated metal-organic frameworks (MOFs) that have better structures and porosities for enhanced biomarker sensing. Here, we summarize the use of fabricated MOF luminescence and electrochemical sensors in devices for cancer biomarker detection. Various strategies of fabrication and the role of fabricated materials in sensing cancer biomarkers have been studied and described. The structural properties, sensing mechanisms, roles of noncovalent interactions, limits of detection, modeling, advantages, and limitations of MOF sensors have been well-discussed. The study presents an innovative technique to detect the cancer biomarkers by the use of luminescence and electrochemical MOF sensors. In addition, the potential association studies have been opening the way for personalized patient treatments and the development of new cancer-detecting devices.
Collapse
Affiliation(s)
- Brij Mohan
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Sandeep Kumar
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hui Xi
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Shixuan Ma
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Zhiyu Tao
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Tiantian Xing
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| | - Peng Ren
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| |
Collapse
|
10
|
Hu Y, Lv S, Wan J, Zheng C, Shao D, Wang H, Tao Y, Li M, Luo Y. Recent advances in nanomaterials for prostate cancer detection and diagnosis. J Mater Chem B 2022; 10:4907-4934. [PMID: 35712990 DOI: 10.1039/d2tb00448h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in the discovery of biomarkers and the exploitation of technologies for prostate cancer (PCa) detection and diagnosis, the initial screening of these PCa-related biomarkers using current...
Collapse
Affiliation(s)
- Yongwei Hu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiaming Wan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Dan Shao
- Institutes of Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| | - Yun Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
11
|
Muhaymin A, Awan UA, Haider A, Naeem M. Nanotechnology for Cancer Biomarkers. CANCER BIOMARKERS IN DIAGNOSIS AND THERAPEUTICS 2022:345-365. [DOI: 10.1007/978-981-16-5759-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Ivanov YD, Goldaeva KV, Malsagova KA, Pleshakova TO, Galiullin RA, Popov VP, Kushlinskii NE, Alferov AA, Enikeev DV, Potoldykova NV, Archakov AI. Nanoribbon Biosensor in the Detection of miRNAs Associated with Colorectal Cancer. MICROMACHINES 2021; 12:1581. [PMID: 34945431 PMCID: PMC8705149 DOI: 10.3390/mi12121581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
A nanoribbon biosensor (NRBS) was developed to register synthetic DNAs that simulate and are analogous to miRNA-17-3p associated with colorectal cancer. Using this nanoribbon biosensor, the ability to detect miRNA-17-3p in the blood plasma of a patient diagnosed with colorectal cancer has been demonstrated. The sensing element of the NRBS was a nanochip based on a silicon-on-insulator (SOI) nanostructure. The nanochip included an array of 10 nanoribbons and was designed with the implementation of top-down technology. For biospecific recognition of miRNA-17-3p, the nanochip was modified with DNA probes specific for miRNA-17-3p. The performance of the nanochip was preliminarily tested on model DNA oligonucleotides, which are synthetic analogues of miRNA-17-3p, and a detection limit of ~10-17 M was achieved. The results of this work can be used in the development of serological diagnostic systems for early detection of colorectal cancer.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| | - Kristina V. Goldaeva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| | - Kristina A. Malsagova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| | - Tatyana O. Pleshakova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| | - Rafael A. Galiullin
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| | - Vladimir P. Popov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Nikolay E. Kushlinskii
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (N.E.K.); (A.A.A.)
| | - Alexander A. Alferov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (N.E.K.); (A.A.A.)
| | - Dmitry V. Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.V.E.); (N.V.P.)
| | - Natalia V. Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.V.E.); (N.V.P.)
| | - Alexander I. Archakov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| |
Collapse
|
13
|
Wang F, Xu Y, Han H, Ma Z. In situ growth of electroactive polymers via ATRP to construct a biosensing interface for tumor marker. Mikrochim Acta 2021; 188:389. [PMID: 34676454 DOI: 10.1007/s00604-021-05048-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
A novel biosensing interface for tumor markers was designed based on the atom transfer radical polymerization (ATRP) of poly(isopropenylphenol) (PPPL) in situ initiated by the fixing of p-chloromethyl benzoic acid on the surface of amino-modified electrodes. It was found that the electrochemical activity of PPPL itself can provide sufficient signals for these biosensors, which can avoid signal leakage and streamline the interface modification process. Cu(II) ions absorbed on the carbon spheres and then were released via acid stimulation to act as a catalyst to participate in the interface polymerization with ATRP. As the concentration of targets increased, more Cu(II) ions were released, and the electrochemical signal of polymers was enhanced. Therefore, the sensitive detection of carbohydrate antigen 19-9 (CA19-9) as a model target was achieved, with an ultralow limit of detection of 39 µU mL-1 and wide detection range from 100 µU mL-1 to 100 U mL-1 under optimal conditions. Furthermore, this method achieved satisfying performance in human blood serum with good inter-assay precision (RSD < 6%) and satisfactory recovery of ~ 99-105%. According to the results, this work is of great significance for constructing biosensor interfaces via in situ polymerization. A novel biosensing interface for tumor marker was designed based on atom transfer radical polymerization (ATRP), which poly(isopropenylphenol) with electrochemical signal was fabricated in situ on electrode.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yang Xu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
14
|
Hollow performances quenching label of Au NPs@CoSnO 3 nanoboxes-based sandwich photoelectrochemical immunosensor for sensitive CYFRA 21-1 detection. Talanta 2021; 233:122552. [PMID: 34215055 DOI: 10.1016/j.talanta.2021.122552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022]
Abstract
In this work, a fire-new "signal-off" type photoelectrochemical (PEC) immunosensor based on bismuth sulfide/iodine doped bismuth oxychloride (Bi2S3/I:BiOCl) heterostructure as a platform and Au nanoparticles loaded hollow CoSnO3 nanoboxes (Au NPs@CoSnO3) as quenching label was designed, for sensitive detection of CYFRA 21-1. The I:BiOCl with flower-like structure could supply high specific surface area for loading nanometer materials. Then, Bi2S3 was formed in-situ by S2- adsorption on the surface of I:BiOCl by dangling bond of Bi3+, but did not change the flower-like structure of I:BiOCl. Then, n-type Bi2S3 and p-type I:BiOCl heterostructure showed good photoelectric behavior by providing an additional electric field to accelerate electron-hole separation. Furthermore, the production process of the heterostructure was simple, fast, low temperature, and without complex raw materials. The Au NPs@CoSnO3 with good photocatalytic activity could strongly compete with Bi2S3/I:BiOCl for electron donor of ascorbic acid (AA). Meanwhile, the CoSnO3 with hollow structure made the quenching effect more significant by the light-scattering effect that enhanced the light absorption capacity and shorten distance of carrier transport. Under optimal conditions, this proposed strategy displayed the low detection limit of 30 fg/mL, with a high linearity range from 100 fg/mL to 100 ng/mL for tumor markers CYFRA 21-1. Simultaneously, it also exhibited excellent specificity and acceptable stability, which might provide a new perspective for the fabrication of other PEC immunosensors with heterostructure simple synthesis and hollow materials.
Collapse
|
15
|
Zhao L, Song X, Ren X, Fan D, Wei Q, Wu D. Rare Self-Luminous Mixed-Valence Eu-MOF with a Self-Enhanced Characteristic as a Near-Infrared Fluorescent ECL Probe for Nondestructive Immunodetection. Anal Chem 2021; 93:8613-8621. [PMID: 34115479 DOI: 10.1021/acs.analchem.1c01531] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Steady and efficient sensitized emission of Eu2+ to Eu3+ can be achieved through a rare mixed-valence Eu-MOF (L4EuIII2EuII). Compared with the sensitization of other substances, the similar ion radius and configuration of the extranuclear electron between Eu2+ and Eu3+ make sensitization easier and more efficient. The sensitization of Eu2+ to Eu3+ is of great assistance for the self-enhanced luminescence of L4EuIII2EuII, the longer luminous time, and the more stable electrochemiluminescence (ECL) signal. Simultaneously, L4EuIII2EuII possesses near-infrared (NIR) fluorescence of around 900 nm and a mighty self-luminous characteristic, which render it useful as a NIR fluorescent probe and as a luminophore to establish a NIR ECL biosensor. This NIR biosensor can greatly reduce the damage to the detected samples and even achieve a nondestructive test and improve the detection sensitivity by virtue of strong susceptibility and environmental suitability of NIR. In addition, the CeO2@Co3O4 triple-shelled microspheres further enhanced the ECL intensity due to two redox pairs of Ce3+/Ce4+ and Co2+/Co3+. The NIR ECL biosensor based on these strategies owns an ultrasensitive detection ability of CYFRA 21-1 with a low limit of detection of 1.70 fg/mL and also provides a novel idea for the construction of a highly effective nondestructive immunodetection biosensor.
Collapse
Affiliation(s)
- Lu Zhao
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Xianzhen Song
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Xiang Ren
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Dawei Fan
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Qin Wei
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Dan Wu
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| |
Collapse
|
16
|
Ivanov YD, Romanova TS, Malsagova KA, Pleshakova TO, Archakov AI. Use of Silicon Nanowire Sensors for Early Cancer Diagnosis. Molecules 2021; 26:3734. [PMID: 34207397 PMCID: PMC8234636 DOI: 10.3390/molecules26123734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
The review covers some research conducted in the field of medical and biomedical application of devices based on silicon sensor elements (Si-NW-sensors). The use of Si-NW-sensors is one of the key methods used in a whole range of healthcare fields. Their biomedical use is among the most important ones as they offer opportunities for early diagnosis of oncological pathologies, for monitoring the prescribed therapy and for improving the people's quality of life.
Collapse
Affiliation(s)
| | | | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.D.I.); (T.S.R.); (T.O.P.); (A.I.A.)
| | | | | |
Collapse
|
17
|
Abstract
Bioelectronics explores the use of electronic devices for applications in signal transduction at their interfaces with biological systems. The miniaturization of the bioelectronic systems has enabled seamless integration at these interfaces and is providing new scientific and technological opportunities. In particular, nanowire-based devices can yield smaller sized and unique geometry detectors that are difficult to access with standard techniques, and thereby can provide advantages in sensitivity with reduced invasiveness. In this review, we focus on nanowire-enabled bioelectronics. First, we provide an overview of synthetic studies for designed growth of semiconductor nanowires of which structure and composition are controlled to enable key elements for bioelectronic devices. Second, we review nanowire field-effect transistor sensors for highly sensitive detection of biomolecules, their applications in diagnosis and drug discovery, and methods for sensitivity enhancement. We then turn to recent progress in nanowire-enabled studies of electrogenic cells, including cardiomyocytes and neurons. Representative advances in electrical recording using nanowire electronic devices for single cell measurements, cell network mapping, and three-dimensional recordings of synthetic and natural tissues, and in vivo brain mapping are highlighted. Finally, we overview the key challenges and opportunities of nanowires for fundamental research and translational applications.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jae-Hyun Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Advanced Science Institute, Yonsei University, Seoul, 03722, Korea
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
18
|
Arndt N, Tran HDN, Zhang R, Xu ZP, Ta HT. Different Approaches to Develop Nanosensors for Diagnosis of Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001476. [PMID: 33344116 PMCID: PMC7740096 DOI: 10.1002/advs.202001476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/18/2020] [Indexed: 05/09/2023]
Abstract
The success of clinical treatments is highly dependent on early detection and much research has been conducted to develop fast, efficient, and precise methods for this reason. Conventional methods relying on nonspecific and targeting probes are being outpaced by so-called nanosensors. Over the last two decades a variety of activatable sensors have been engineered, with a great diversity concerning the operating principle. Therefore, this review delineates the achievements made in the development of nanosensors designed for diagnosis of diseases.
Collapse
Affiliation(s)
- Nina Arndt
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- Department of BiotechnologyTechnische Universität BerlinBerlin10623Germany
| | - Huong D. N. Tran
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- School of Environment and ScienceGriffith UniversityBrisbaneQueensland4111Australia
| |
Collapse
|
19
|
Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. Trends Analyt Chem 2020; 133:116067. [PMID: 33052154 PMCID: PMC7545218 DOI: 10.1016/j.trac.2020.116067] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of field-Effect-Transistor (FET) type biosensing arrangements has been highlighted by researchers in the field of early biomarker detection and drug screening. Their non-metalized gate dielectrics that are exposed to an electrolyte solution cover the semiconductor material and actively transduce the biological changes on the surface. The efficiency of these novel devices in detecting different biomolecular analytes in a real-time, highly precise, specific, and label-free manner has been validated by numerous research studies. Considerable progress has been attained in designing FET devices, especially for biomedical diagnosis and cell-based assays in the past few decades. The exceptional electronic properties, compactness, and scalability of these novel tools are very desirable for designing rapid, label-free, and mass detection of biomolecules. With the incorporation of nanotechnology, the performance of biosensors based on FET boosts significantly, particularly, employment of nanomaterials such as graphene, metal nanoparticles, single and multi-walled carbon nanotubes, nanorods, and nanowires. Besides, their commercial availability, and high-quality production on a large-scale, turn them to be one of the most preferred sensing and screening platforms. This review presents the basic structural setup and working principle of different types of FET devices. We also focused on the latest progression regarding the use of FET biosensors for the recognition of viruses such as, recently emerged COVID-19, Influenza, Hepatitis B Virus, protein biomarkers, nucleic acids, bacteria, cells, and various ions. Additionally, an outline of the development of FET sensors for investigations related to drug development and the cellular investigation is also presented. Some technical strategies for enhancing the sensitivity and selectivity of detection in these devices are addressed as well. However, there are still certain challenges which are remained unaddressed concerning the performance and clinical use of transistor-based point-of-care (POC) instruments; accordingly, expectations about their future improvement for biosensing and cellular studies are argued at the end of this review.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Dept. of Elecrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada
| |
Collapse
|
20
|
Smith R, Geary SM, Salem AK. Silicon Nanowires and their Impact on Cancer Detection and Monitoring. ACS APPLIED NANO MATERIALS 2020; 3:8522-8536. [PMID: 36733606 PMCID: PMC9891666 DOI: 10.1021/acsanm.0c01572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since the inception of silicon nanowires (SINWs)-based biosensors in 2001, SINWs employed in various detection schemes have routinely demonstrated label-free, real-time, sub femtomolar detection of both protein and nucleic acid analytes. This has allowed SiNW-based biosensors to integrate into the field of cancer detection and cancer monitoring and thus have the potential to be a paradigm shift in how cancer biomarkers are detected and monitored. Combining this with several promising fields such as liquid biopsies and targeted oncology, SiNW based biosensors represents an opportunity for cancer monitoring and treatment to be a more dynamic process. Such advances provide clinicians with more information on the molecular landscape of cancer patients which can better inform cancer treatment guidelines.
Collapse
Affiliation(s)
- Rasheid Smith
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
21
|
Liu R, Ye X, Cui T. Recent Progress of Biomarker Detection Sensors. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7949037. [PMID: 33123683 PMCID: PMC7585038 DOI: 10.34133/2020/7949037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Early cancer diagnosis and treatment are crucial research fields of human health. One method that has proven efficient is biomarker detection which can provide real-time and accurate biological information for early diagnosis. This review presents several biomarker sensors based on electrochemistry, surface plasmon resonance (SPR), nanowires, other nanostructures, and, most recently, metamaterials which have also shown their mechanisms and prospects in application in recent years. Compared with previous reviews, electrochemistry-based biomarker sensors have been classified into three strategies according to their optimizing methods in this review. This makes it more convenient for researchers to find a specific fabrication method to improve the performance of their sensors. Besides that, as microfabrication technologies have improved and novel materials are explored, some novel biomarker sensors-such as nanowire-based and metamaterial-based biomarker sensors-have also been investigated and summarized in this review, which can exhibit ultrahigh resolution, sensitivity, and limit of detection (LoD) in a more complex detection environment. The purpose of this review is to understand the present by reviewing the past. Researchers can break through bottlenecks of existing biomarker sensors by reviewing previous works and finally meet the various complex detection needs for the early diagnosis of human cancer.
Collapse
Affiliation(s)
- Ruitao Liu
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Xiongying Ye
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Tonello S, Stradolini F, Abate G, Uberti D, Serpelloni M, Carrara S, Sardini E. Electrochemical detection of different p53 conformations by using nanostructured surfaces. Sci Rep 2019; 9:17347. [PMID: 31758050 PMCID: PMC6874615 DOI: 10.1038/s41598-019-53994-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
Protein electrochemistry represents a powerful technique for investigating the function and structure of proteins. Currently available biochemical assays provide limited information related to the conformational state of proteins and high costs. This work provides novel insights into the electrochemical investigation of the metalloprotein p53 and its redox products using label-free direct electrochemistry and label-based antibody-specific approaches. First, the redox activities of different p53 redox products were qualitatively investigated on carbon-based electrodes. Then, focusing on the open p53 isoform (denatured p53), a quantitative analysis was performed, comparing the performances of different bulk and nanostructured materials (carbon and platinum). Overall, four different p53 products could be successfully discriminated, from wild type to denatured. Label-free analysis suggested a single electron exchange with electron transfer rate constants on the order of 1 s-1. Label-based analysis showed decreasing affinity of pAb240 towards denatured, oxidized and nitrated p53. Furthermore, platinum nanostructured electrodes showed the highest enhancement of the limit of detection in the quantitative analysis (100 ng/ml). Overall, the obtained results represent a first step towards the implementation of highly requested complex integrated devices for clinical practices, with the aim to go beyond simple protein quantification.
Collapse
Affiliation(s)
- Sarah Tonello
- Department of Information Engineering, University of Brescia, Brescia, Italy.
| | | | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mauro Serpelloni
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Sandro Carrara
- Integrated Systems Laboratory (LSI), EPFL, Lausanne, Switzerland
| | - Emilio Sardini
- Department of Information Engineering, University of Brescia, Brescia, Italy
| |
Collapse
|
23
|
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2019; 206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. Lung cancer is the most common type of cancer, so that about 25% of all cancer deaths are related to the lung cancer. The lung cancer is classified as two different types with different treatment methodology: the small cell lung carcinoma and nonsmall cell lung carcinoma are two categories of the lung cancer. Since the lung cancer is often in the latent period in its early stages, therefore, early diagnosis of lung cancer has many challenges. Hence, there is a need for sensitive and reliable tools for preclinical diagnosis of lung cancer. Therefore, many detection methods have been employed for early detection of lung cancer. As lung cancer tumors growth in the body, the cancerous cells release numerous DNA, proteins, and metabolites as special biomarkers of the lung cancer. The levels of these biomarkers show the stages of the lung cancer. Therefore, detection of the biomarkers can be used for screening and clinical diagnosis of the lung cancer. There are numerous biomarkers for the lung cancer such as EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125 and VEGF. Nowadays, electrochemical methods are very attractive and useful in the lung cancer detections. So, in this paper, the recent advances and improvements (2010-2018) in the electrochemical detection of the lung cancer biomarkers have been reviewed.
Collapse
Affiliation(s)
- Akbar Khanmohammadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Aghaie
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Qazvini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Hsieh HY, Peng YH, Lin SF, Chen LC, Yu TC, Chiou CF, Lee J. Triple-Junction Optoelectronic Sensor with Nanophotonic Layer Integration for Single-Molecule Level Decoding. ACS NANO 2019; 13:4486-4495. [PMID: 30856319 DOI: 10.1021/acsnano.9b00019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interest in developing a rapid and robust DNA sequencing platform has surged over the past decade. Various next-/third-generation sequencing mechanisms have been employed to replace the traditional Sanger sequencing method. In sequencing by synthesis, a signal is monitored by a scanning charge-coupled device (CCD) to identify thousands to millions of incorporated dNTPs with distinctive fluorophores on a chip. Because one reaction site usually occupies dozens of pixels on a CCD detector, a bottleneck related to the bandwidth of CCD imaging limits the throughputs of the sequencing performance and causes trade-offs among speed, accuracy, read length, and the numbers of reaction sites in parallel. Thus, current research aims to align one reaction site to a few pixels by directly stacking nanophotonic layers onto a CMOS detector to minimize the size of the sequencing platforms and accelerate the processing procedures. This article reports a custom integrated optoelectronic device based on a triple-junction photodiode (TPD) CMOS sensor in conjunction with NPL integration for real-time illumination and detection of fluorescent molecules.
Collapse
Affiliation(s)
- Hsin-Yi Hsieh
- Personal Genomics, Inc. , Hsinchu Biomedical Science Park , Zhubei , Hsinchu 30261 , Taiwan
| | - Yu-Hsuan Peng
- Personal Genomics, Inc. , Hsinchu Biomedical Science Park , Zhubei , Hsinchu 30261 , Taiwan
| | - Sheng-Fu Lin
- Personal Genomics, Inc. , Hsinchu Biomedical Science Park , Zhubei , Hsinchu 30261 , Taiwan
| | - Li-Ching Chen
- Personal Genomics, Inc. , Hsinchu Biomedical Science Park , Zhubei , Hsinchu 30261 , Taiwan
| | - Teng-Chien Yu
- Personal Genomics, Inc. , Hsinchu Biomedical Science Park , Zhubei , Hsinchu 30261 , Taiwan
| | - Chung-Fan Chiou
- Personal Genomics, Inc. , Hsinchu Biomedical Science Park , Zhubei , Hsinchu 30261 , Taiwan
| | - Johnsee Lee
- Personal Genomics, Inc. , Hsinchu Biomedical Science Park , Zhubei , Hsinchu 30261 , Taiwan
| |
Collapse
|
25
|
Facile and highly sensitive photoelectrochemical biosensing platform based on hierarchical architectured polydopamine/tungsten oxide nanocomposite film. Biosens Bioelectron 2019; 126:1-6. [DOI: 10.1016/j.bios.2018.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 12/20/2022]
|
26
|
Rani D, Pachauri V, Madaboosi N, Jolly P, Vu XT, Estrela P, Chu V, Conde JP, Ingebrandt S. Top-Down Fabricated Silicon Nanowire Arrays for Field-Effect Detection of Prostate-Specific Antigen. ACS OMEGA 2018; 3:8471-8482. [PMID: 31458975 PMCID: PMC6644640 DOI: 10.1021/acsomega.8b00990] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/18/2018] [Indexed: 05/16/2023]
Abstract
Highly sensitive electrical detection of biomarkers for the early stage screening of cancer is desired for future, ultrafast diagnostic platforms. In the case of prostate cancer (PCa), the prostate-specific antigen (PSA) is of prime interest and its detection in combination with other PCa-relevant biomarkers in a multiplex approach is advised. Toward this goal, we demonstrate the label-free, potentiometric detection of PSA with silicon nanowire ion-sensitive field-effect transistor (Si NW-ISFET) arrays. To realize the field-effect detection, we utilized the DNA aptamer-receptors specific for PSA, which were covalently and site-specifically immobilized on Si NW-ISFETs. The platform was used for quantitative detection of PSA and the change in threshold voltage of the Si NW-ISEFTs was correlated with the concentration of PSA. Concentration-dependent measurements were done in a wide range of 1 pg/mL to 1 μg/mL, which covers the clinical range of interest. To confirm the PSA-DNA aptamer binding on the Si NW surfaces, a sandwich-immunoassay based on chemiluminescence was implemented. The electrical approach using the Si NW-ISFET platform shows a lower limit of detection and a wide dynamic range of the assay. In future, our platform should be utilized to detect multiple biomarkers in one assay to obtain more reliable information about cancer-related diseases.
Collapse
Affiliation(s)
- Dipti Rani
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
| | - Vivek Pachauri
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
| | - Narayanan Madaboosi
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - Pawan Jolly
- Department
of Electronic and Electrical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Xuan-Thang Vu
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
- Institute
of Physics I, RWTH Aachen University, Sommerfeldstr. 14, 52074 Aachen, Germany
| | - Pedro Estrela
- Department
of Electronic and Electrical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Virginia Chu
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - João Pedro Conde
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - Sven Ingebrandt
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
- E-mail:
| |
Collapse
|
27
|
Doucey MA, Carrara S. Nanowire Sensors in Cancer. Trends Biotechnol 2018; 37:86-99. [PMID: 30126620 DOI: 10.1016/j.tibtech.2018.07.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 01/04/2023]
Abstract
In 2006, the group of Dr C.M. Lieber pioneered the field of nanowire sensors by fabricating devices for the ultra-sensitive label-free detection of biological macromolecules. Since then, nanowire sensors have demonstrated their ability to detect cancer-associated analytes in peripheral blood, tumor tissue, and the exhaled breath of cancer patients. These innovative developments have marked a new era with unprecedented detection performance, capable of addressing crucial needs such as cancer diagnosis and monitoring disease progression and patient response to therapy. The ability of nanowire sensors to identify molecular features of patient tumor represents a first step toward precision medicine, and their integration into portable devices has the potential to revolutionize cancer diagnosis and patient monitoring.
Collapse
Affiliation(s)
- Marie-Agnès Doucey
- Department of Oncolology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne Branch, 1066 Epalinges, Switzerland.
| | - Sandro Carrara
- Integrated Systems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland. https://twitter.com/CarraraSandro
| |
Collapse
|
28
|
Yang L, Zhen SJ, Li YF, Huang CZ. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker. NANOSCALE 2018; 10:11942-11947. [PMID: 29901677 DOI: 10.1039/c8nr02820f] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Graphene oxide (GO) exhibits distinctive Raman scattering features for its high frequency D (disordered) and tangential modes (G-band), which are characteristically sharp at 1580 cm-1 and 1350 cm-1, respectively, but are too weak for sensitive quantitation purposes. By depositing silver nanoparticles on the surface of GO in this contribution, both D and G bands of GO become enhanced. The enzyme label of this method controls the dissolution of silver nanoparticles on the surface of GO through hydrogen peroxide which is produced by the oxidation of the enzyme substrate. With the dissolution of the silver nanoparticles a greatly decreased SERS signal of GO was obtained. This strategy involves dual signal amplification of the enzyme and nanocomposites to improve the detection sensitivity. As a proof of concept, prostate specific antigen (PSA), a biomarker for prostate cancer, is successfully detected as a target by forming a sandwich structure in immunoassay. The SERS immunoassay possesses excellent analytical performance in the range 0.5 pg mL-1 to 500 pg mL-1 with a limit of detection of 0.23 pg mL-1, making the detection of PSA serum samples from prostate cancer patients satisfactory, demonstrating that the sensitive enzyme-assisted dissolved AgNPs SERS immunoassay of PSA has potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | |
Collapse
|
29
|
Ding S, Gu Z, Yan R, Tang Y, Miao P. A novel mode of DNA assembly at electrode and its application to protein quantification. Anal Chim Acta 2018; 1029:24-29. [PMID: 29907286 DOI: 10.1016/j.aca.2018.04.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 02/08/2023]
Abstract
Sensitive and specific detection of protein is of great significance for early diagnosis and prognosis of many diseases. However, great challenges remain unsolved including relative low sensitivity, high cost, long testing time, complicated instrument and laborious operation. To improve the performance of protein detection methods, development of fine reaction interface for recognition and signal amplification is of great importance. In this work, we construct a novel mode of DNA assembly at electrode interface based on a tripodal surface anchor and an electrochemical aptasensor for protein assay is developed. The orientation of the immobilized DNA is optimized, which promises the efficiency of protein recognition. In addition, hybridization chain reaction is employed for further signal amplification. Therefore, this detection method shows high sensitivity with excellent specificity. The strategy can be universally applicable by simply modifying the sequences of used DNA probes.
Collapse
Affiliation(s)
- Shaohua Ding
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Zhipeng Gu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ruhong Yan
- Department of Clinical Laboratory, Suzhou Science and Technology Town Hospital, Suzhou, 215153, People's Republic of China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China.
| |
Collapse
|
30
|
Xie L, Yang X, He Y, Yuan R, Chai Y. Polyacrylamide Gel-Contained Zinc Finger Peptide as the "Lock" and Zinc Ions as the "Key" for Construction of Ultrasensitive Prostate-Specific Antigen SERS Immunosensor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15200-15206. [PMID: 29658693 DOI: 10.1021/acsami.7b19717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we adopted polyacrylamide gel-contained zinc finger peptide (PZF) as a "lock" of Raman signal and zinc ions (Zn2+) as a sensitive "key", which was converted from target-captured ZnO NPs, to achieve the measurement of prostate-specific antigen (PSA). Owing to the lock effect from PZF, the surface-enhanced Raman scattering (SERS) tag toluidine blue (TB) connected on Ag NP-coating silica wafer was sheltered leading to low Raman response. Meanwhile, target PSA can specifically connect with antibody 2-coupled ZnO nanocomplexes (ZnO@Au@Ab2) and antibody 1-coupled magnetic (CoFe2O4@Au@Ab1) nanocomposite through sandwich immunoassay. In the presence of HCl, the ZnO NPs would convert into Zn2+ to open the PZF because Zn2+ can specifically react with zinc finger peptide to destroy the PZF structure forming abundant pores. In this way, Zn2+ could act as the key of Raman signal to open the PZF structure obtaining a strong Raman signal of TB. The proposed SERS sensor can have a quantitative detection of PSA within the range of 1 pg mL-1 to 10 ng mL-1 with a detection limit of 0.65 pg mL-1. The interaction between zinc finger peptide and Zn2+ was firstly applied in SERS sensor for the sensitive detection of PSA. These results demonstrated that the new designed SERS biosensor could be a promising tool in biomarker diagnosis.
Collapse
Affiliation(s)
- Linglin Xie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China
| | - Xia Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China
| | - Yi He
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , People's Republic of China
| |
Collapse
|
31
|
Ye F, Zhao Y, El-Sayed R, Muhammed M, Hassan M. Advances in nanotechnology for cancer biomarkers. NANO TODAY 2018; 18:103-123. [DOI: 10.1016/j.nantod.2017.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Xing Y, Dittrich PS. One-Dimensional Nanostructures: Microfluidic-Based Synthesis, Alignment and Integration towards Functional Sensing Devices. SENSORS 2018; 18:s18010134. [PMID: 29303990 PMCID: PMC5795670 DOI: 10.3390/s18010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been used in applications such as catalysts, electronic instrumentation and sensors for physical parameters or chemical compounds and biomolecules and hence, can be considered as building blocks. Here, we outline and critically discuss promising strategies for microfluidic-assisted synthesis, alignment and various chemical and biochemical applications of 1D nanostructures. In particular, the use of 1D nanostructures for sensing chemical/biological compounds are reviewed.
Collapse
Affiliation(s)
- Yanlong Xing
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e. V, 12489 Berlin, Germany.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
33
|
Recent trends in the development of complementary metal oxide semiconductor image sensors to detect foodborne bacterial pathogens. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
para-Sulfonatocalix[4]arene stabilized gold nanoparticles multilayers interfaced to electrodes through host-guest interaction for sensitive ErbB2 detection. Biosens Bioelectron 2018; 99:375-381. [DOI: 10.1016/j.bios.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
|
35
|
Presnova G, Presnov D, Krupenin V, Grigorenko V, Trifonov A, Andreeva I, Ignatenko O, Egorov A, Rubtsova M. Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens Bioelectron 2017; 88:283-289. [DOI: 10.1016/j.bios.2016.08.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/06/2016] [Accepted: 08/17/2016] [Indexed: 01/17/2023]
|
36
|
Huan Y, Park SJ, Chandra Gupta K, Park SY, Kang IK. Slide cover glass immobilized liquid crystal microdroplets for sensitive detection of an IgG antigen. RSC Adv 2017. [DOI: 10.1039/c7ra06386e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Slide cover glass immobilized AIgG conjugated LC microdroplets for optical detection of rabbit IgG antigen through interfacial antibody–antigen interactions.
Collapse
Affiliation(s)
- Yue Huan
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- South Korea
| | - So Jung Park
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- South Korea
| | - Kailash Chandra Gupta
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- South Korea
- Polymer Research Laboratory
| | - Soo-Young Park
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- South Korea
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- South Korea
| |
Collapse
|
37
|
Shuai HL, Wu X, Huang KJ. Molybdenum disulfide sphere-based electrochemical aptasensors for protein detection. J Mater Chem B 2017; 5:5362-5372. [DOI: 10.1039/c7tb01276d] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we report the development of an ultrasensitive sandwich-type electrochemical aptasensor for protein detection.
Collapse
Affiliation(s)
- Hong-Lei Shuai
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
| | - Xu Wu
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
- School of Physics and Electronic Engineering
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
| |
Collapse
|
38
|
Chandran GT, Li X, Ogata A, Penner RM. Electrically Transduced Sensors Based on Nanomaterials (2012-2016). Anal Chem 2016; 89:249-275. [PMID: 27936611 DOI: 10.1021/acs.analchem.6b04687] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Girija Thesma Chandran
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Xiaowei Li
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Alana Ogata
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
39
|
|
40
|
Du R, Zhu L, Gan J, Wang Y, Qiao L, Liu B. Ultrasensitive Detection of Low-Abundance Protein Biomarkers by Mass Spectrometry Signal Amplification Assay. Anal Chem 2016; 88:6767-72. [PMID: 27253396 DOI: 10.1021/acs.analchem.6b01063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A mass spectrometry signal amplification method is developed for the ultrasensitive and selective detection of low-abundance protein biomarkers by utilizing tag molecules on gold nanoparticles (AuNPs). EpCAM and thrombin as model targets are captured by specific aptamers immobilized on the AuNPs. With laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS), the mass tag molecules are detected to represent the protein biomarkers. Benefiting from the MS signal amplification, the assay can achieve a limit of detection of 100 aM. The method is further applied to detect thrombin in fetal bovine serum and EpCAM in cell lysates to demonstrate its selectivity and feasibility in complex biological samples. With the high sensitivity and specificity, the protocol shows great promise for providing a new route to single-cell analysis and early disease diagnosis.
Collapse
Affiliation(s)
- Ruijun Du
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China
| | - Lina Zhu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China
| | - Jinrui Gan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China
| | - Yuning Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China
| | - Liang Qiao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China.,Shanghai Stomatological Hospital, Fudan University , East Beijing Road 356, Shanghai 200001, China
| | - Baohong Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China.,Shanghai Stomatological Hospital, Fudan University , East Beijing Road 356, Shanghai 200001, China
| |
Collapse
|
41
|
Lu N, Gao A, Zhou H, Wang Y, Yang X, Wang Y, Li T. Progress in Silicon Nanowire-Based Field-Effect Transistor Biosensors for Label-Free Detection of DNA. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|