1
|
Merian A, Silva A, Wolf S, Frosch T, Frosch T. Ultrasensitive Raman Gas Spectroscopy for Dinitrogen Sensing at the Parts-per-Billion Level. Anal Chem 2024; 96:14884-14890. [PMID: 39231523 PMCID: PMC11412228 DOI: 10.1021/acs.analchem.4c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sensing small changes in the concentration of dinitrogen (N2) is a difficult analytical task. As N2-sensing is crucial for nitrogen cycle research in general and studies of denitrification in particular, researchers went to great lengths to develop techniques like the gas-flow-soil-core method, which achieves a precision of 200 ppb at 20 ppm of N2. Here, we present a Raman gas spectroscopic technique based on high pressure, high laser power, and high-NA signal collection, which achieves a limit of detection (LoD) of 59 ppb N2 and a precision of 27 ppb at 10 ppm of N2. This improves the lowest LoD for N2 reported for Raman gas spectroscopy by 2 orders of magnitude. Furthermore, this constitutes an improvement in precision by 1 order of magnitude compared to the GC-MS-based gas-flow-soil-core method currently established in denitrification research. We show that the presented setup is both stable and tight enough to ensure highly sensitive, precise, and repeatable measurements of N2. As Raman gas spectroscopy is a versatile and comprehensive method, the described technique could be easily expanded to other relevant gases like nitrous oxide or to simultaneous multigas sensing. In summary, our method offers possibilities for N2-sensing and could eventually enable denitrification studies with increased sensitivity and a larger scope.
Collapse
Affiliation(s)
- Andreas Merian
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
| | - Artur Silva
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
| | - Sebastian Wolf
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Timea Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Torsten Frosch
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| |
Collapse
|
2
|
Blohm A, Domes C, Merian A, Wolf S, Popp J, Frosch T. Comprehensive multi-gas study by means of fiber-enhanced Raman spectroscopy for the investigation of nitrogen cycle processes. Analyst 2024; 149:1885-1894. [PMID: 38357795 DOI: 10.1039/d4an00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The extensive use of synthetic fertilizers has led to a considerable increase in reactive nitrogen input into agricultural and natural systems, resulting in negative effects in multiple ecosystems, the so-called nitrogen cascade. Since the global population relies on fertilization for food production, synthetic fertilizer use needs to be optimized by balancing crop yield and reactive nitrogen losses. Fiber-enhanced Raman spectroscopy (FERS) is introduced as a unique method for the simultaneous quantification of multiple gases to the study processes related to the nitrogen cycle. By monitoring changes in the headspace gas concentrations, processes such as denitrification, nitrification, respiration, and nitrogen fixation, as well as fertilizer addition were studied. The differences in concentration between the ambient and prepared process samples were evident in the Raman spectra, allowing for differentiation of process-specific spectra. Gas mixture concentrations were quantified within a range of low ppm to 100% for the gases N2, O2, CO2, N2O, and NH3. Compositional changes were attributed to processes of the nitrogen cycle. With help of multivariate curve resolution, it was possible to quantify N2O and CO2 simultaneously. The impact of fertilizers on N-cycle processes in soil was simulated and analyzed for identifying active processes. Thus, FERS was proven to be a suitable technique to optimize fertilizer composition and to quantify N2O and NH3 emissions, all with a single device and without further sample preparation.
Collapse
Affiliation(s)
- Annika Blohm
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Christian Domes
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Andreas Merian
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany.
| | - Sebastian Wolf
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Abbe Centre of Photonics, Friedrich Schiller University, 07743 Jena, Germany
| | - Torsten Frosch
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany.
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Abbe Centre of Photonics, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
3
|
Wolf S, Domes R, Domes C, Frosch T. Spectrally Resolved and Highly Parallelized Raman Difference Spectroscopy for the Analysis of Drug-Target Interactions between the Antimalarial Drug Chloroquine and Hematin. Anal Chem 2024; 96:3345-3353. [PMID: 38301154 PMCID: PMC10902819 DOI: 10.1021/acs.analchem.3c04231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Malaria is a severe disease caused by cytozoic parasites of the genus Plasmodium, which infiltrate and infect red blood cells. Several drugs have been developed to combat the devastating effects of malaria. Antimalarials based on quinolines inhibit the crystallization of hematin into hemozoin within the parasite, ultimately leading to its demise. Despite the frequent use of these agents, there are unanswered questions about their mechanisms of action. In the present study, the quinoline chloroquine and its interaction with the target structure hematin was investigated using an advanced, highly parallelized Raman difference spectroscopy (RDS) setup. Simultaneous recording of the spectra of hematin and chloroquine mixtures with varying compositions enabled the observation of changes in peak heights and positions based on the altered molecular structure resulting from their interaction. A shift of (-1.12 ± 0.05) cm-1 was observed in the core-size marker band ν(CαCm)asym peak position of the 1:1 chloroquine-hematin mixture compared to pure hematin. The oxidation-state marker band ν(pyrrole half-ring)sym exhibited a shift by (+0.93 ± 0.13) cm-1. These results were supported by density functional theory (DFT) calculations, indicating a hydrogen bond between the quinolinyl moiety of chloroquine and the oxygen atom of ferric protoporphyrin IX hydroxide (Fe(III)PPIX-OH). The consequence is a reduced electron density within the porphyrin moiety and an increase in its core size. This hypothesis provided further insights into the mechanism of hemozoin inhibition, suggesting chloroquine binding to the monomeric form of hematin, thereby preventing its further crystallization to hemozoin.
Collapse
Affiliation(s)
- Sebastian Wolf
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Christian Domes
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Torsten Frosch
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| |
Collapse
|
4
|
Blohm A, Domes C, Frosch T. Isotopomeric Peak Assignment for N 2O in Cross-Labeling Experiments by Fiber-Enhanced Raman Multigas Spectroscopy. Anal Chem 2024. [PMID: 38315571 PMCID: PMC10882577 DOI: 10.1021/acs.analchem.3c04236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Human intervention in nature, especially fertilization, greatly increased the amount of N2O emission. While nitrogen fertilizer is used to improve nitrogen availability and thus plant growth, one negative side effect is the increased emission of N2O. Successful regulation and optimization strategies require detailed knowledge of the processes producing N2O in soil. Nitrification and denitrification, the main processes responsible for N2O emissions, can be differentiated using isotopic analysis of N2O. The interplay between these processes is complex, and studies to unravel the different contributions require isotopic cross-labeling and analytical techniques that enable tracking of the labeled compounds. Fiber-enhanced Raman spectroscopy (FERS) was exploited for sensitive quantification of N2O isotopomers alongside N2, O2, and CO2 in multigas compositions and in cross-labeling experiments. FERS enabled the selective and sensitive detection of specific molecular vibrations that could be assigned to various isotopomer peaks. The isotopomers 14N15N16O (2177 cm-1) and 15N14N16O (2202 cm-1) could be clearly distinguished, allowing site-specific measurements. Also, isotopomers containing different oxygen isotopes, such as 14N14N17O, 14N14N18O, 15N15N16O, and 15N14N18O could be identified. A cross-labeling showed the capability of FERS to disentangle the contributions of nitrification and denitrification to the total N2O fluxes while quantifying the total sample headspace composition. Overall, the presented results indicate the potential of FERS for isotopic studies of N2O, which could provide a deeper understanding of the different pathways of the nitrogen cycle.
Collapse
Affiliation(s)
- Annika Blohm
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
| | - Christian Domes
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
| | - Torsten Frosch
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
| |
Collapse
|
5
|
Yang QY, Tan Y, Qu ZH, Sun Y, Liu AW, Hu SM. Multiple Gas Detection by Cavity-Enhanced Raman Spectroscopy with Sub-ppm Sensitivity. Anal Chem 2023; 95:5652-5660. [PMID: 36940417 DOI: 10.1021/acs.analchem.2c05432] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Accurate and sensitive detection of multicomponent trace gases below the parts-per-million (ppm) level is needed in a variety of medical, industrial, and environmental applications. Raman spectroscopy can identify multiple molecules in the sample simultaneously and has excellent potential for fast diagnosis of various samples, but applications are often limited by its sensitivity. In this contribution, we report the development of a cavity-enhanced Raman spectroscopy instrument using a narrow-line width 532 nm laser locked with a high-finesse cavity through a Pound-Drever-Hall locking servo, which allows continuous measurement in a broad spectral range. An intracavity laser power of up to 1 kW was achieved with an incident laser power of about 240 mW, resulting in a significant enhancement of the Raman signal in the range of 200-5000 cm-1 and a sub-ppm sensitivity for various molecules. The technique is applied in the detection of different samples, including ambient air, natural gas, and reference gas of sulfur hexafluoride, demonstrating its capability for the quantitative measurement of various trace components.
Collapse
Affiliation(s)
- Qing-Ying Yang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan Tan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Han Qu
- State Grid Hubei Electric Power Research Institute, Wuhan 430071, China
| | - Yu Sun
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - An-Wen Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shui-Ming Hu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Huang B, Zhao Q, Sun C, Zhu L, Zhang H, Zhang Y, Liu C, Li F. Trace Analysis of Gases and Liquids with Spontaneous Raman Scattering Based on the Integrating Sphere Principle. Anal Chem 2022; 94:13311-13314. [PMID: 36154009 DOI: 10.1021/acs.analchem.2c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spontaneous Raman scattering is an attractive optical technique for the analysis of gases and liquids; however, their low densities and notoriously weak scattering cross sections demand an enhancement of the spontaneous Raman scattering signal for detection. Here, we have developed a simple but highly effective and fast technique to enhance the signal of spontaneous Raman scattering from gases and liquids. The technique is developed based on the principle of an integrating sphere, which realizes the multiple pass actions of low-energy pump light and the collection of all Raman scattered light for a sample volume of 2 mL. By measuring the ambient air sample with an exposure time of 180 s, we found the experimental detection limit of our spontaneous Raman scattering setup can reach 3 ppm. CH4 (<2 ppm) in air can be also examined by increasing the exposure time to 300 s. The performance of our setup used for the analysis of trace gases is further illustrated by characterizing ethane, propane, butane, and pentane in methane as well as isotopes of carbon dioxide. The results reveal that the detection limit of our setup for liquids can be improved by nearly 4 orders of magnitude compared to that of confocal Raman scattering spectroscopy with the same experimental conditions.
Collapse
Affiliation(s)
- Baokun Huang
- School of Science, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiannan Zhao
- School of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenglin Sun
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Lin Zhu
- School of Science, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hong Zhang
- School of Science, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yunhong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Cunming Liu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Fabing Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Wolf S, Domes R, Merian A, Domes C, Frosch T. Parallelized Raman Difference Spectroscopy for the Investigation of Chemical Interactions. Anal Chem 2022; 94:10346-10354. [PMID: 35820661 DOI: 10.1021/acs.analchem.2c00222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman spectroscopy provides an extremely high chemical selectivity. Raman difference spectroscopy is a technique to reveal even the smallest differences that occur due to weak interactions between substances and changes in the molecular structure. To enable parallelized and highly sensitive Raman difference spectroscopy in a microtiter-array, a diffractive optical element, a lens array, and a fiber bundle were integrated into a Raman spectroscopy setup in a unique fashion. The setup was evaluated with a microtiter-array containing pyridine-water complexes, and subwavenumber changes below the spectrometer's resolution could be resolved. The spectral changes were emphasized with two-dimensional correlation analysis. Density functional theory calculation and "atoms in molecule" analysis were performed to simulate the intermolecular long-range interactions between water and pyridine molecules and to get insight into the involved noncovalent interactions, respectively. It was found that by the addition of pyridine, the energy portion of hydrogen bonds to the total complexation energy between pyridine and water reduces. These results demonstrate the unique abilities of the new setup to investigate subtle changes due to biochemically important molecular interactions and opens new avenues to perform drug binding assays and to monitor highly parallelized chemical reactions.
Collapse
Affiliation(s)
- Sebastian Wolf
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Andreas Merian
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Christian Domes
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Jena 07745, Germany.,Abbe Center of Photonics, Friedrich Schiller University, Jena 07745, Germany.,Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
| |
Collapse
|
8
|
Wang P, Chen W, Wang J, Zhou F, Hu J, Zhang Z, Wan F. Hazardous Gas Detection by Cavity-Enhanced Raman Spectroscopy for Environmental Safety Monitoring. Anal Chem 2021; 93:15474-15481. [PMID: 34775758 DOI: 10.1021/acs.analchem.1c03499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate the practicability of cavity-enhanced Raman spectroscopy (CERS) with a folded multipass cavity as a unique tool for the detection of hazardous gases in the atmosphere. A four-mirror Z-sharped multipass cavity results in a greatly extended laser-gas interaction length to improve the Raman signal intensity of gases. For Raman intensity maximization, the optimal number of intracavity beams of a single reflection cycle is calculated and then the cavity parameters are designed. A total of 360 intracavity beams are realized, which are circulated four times in the cavity based on the polarization. ppb-Level Raman gas sensing at atmospheric pressure for several typical explosive gases and toxic gases in ambient air, including hydrogen (H2), methane (CH4), carbon monoxide (CO), hydrogen sulfide (H2S), and chlorine (Cl2), is achieved at 300 s exposure time. Our CERS apparatus, which can detect multiple gases simultaneously with ultrahigh sensitivity and high selectivity, is powerful for detecting hazardous gases in the atmosphere, and it has excellent potential for environmental safety monitoring.
Collapse
Affiliation(s)
- Pinyi Wang
- Chongqing University State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing 400044, China
| | - Weigen Chen
- Chongqing University State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing 400044, China
| | - Jianxin Wang
- Chongqing University State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing 400044, China
| | - Feng Zhou
- Chongqing University State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing 400044, China.,State Grid Jiangsu Electric Power Company Changzhou Power Supply Company, Jiangsu, Nanjing 213000, China
| | - Jin Hu
- Chongqing University State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing 400044, China.,Electric Power Research Institute of Yunnan Power Grid Company Limited, Yunnan, Kunming 650217, China
| | - Zhixian Zhang
- Chongqing University State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing 400044, China
| | - Fu Wan
- Chongqing University State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing 400044, China
| |
Collapse
|
9
|
Knebl A, Domes C, Domes R, Wolf S, Popp J, Frosch T. Hydrogen and C2-C6 Alkane Sensing in Complex Fuel Gas Mixtures with Fiber-Enhanced Raman Spectroscopy. Anal Chem 2021; 93:10546-10552. [PMID: 34297525 DOI: 10.1021/acs.analchem.1c01500] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Power-to-gas is a heavily discussed option to store surplus electricity from renewable sources. Part of the generated hydrogen could be fed into the gas grid and lead to fluctuations in the composition of the fuel gas. Consequently, both operators of transmission networks and end users would need to frequently monitor the gas to ensure safety as well as optimal and stable operation. Currently, gas chromatography-based analysis methods are the state of the art. However, these methods have several downsides for time-resolved and distributed application and Raman gas spectroscopy is favorable for future point-of-use monitoring. Here, we demonstrate that fiber-enhanced Raman gas spectroscopy (FERS) enables the simultaneous detection of all relevant gases, from major (methane, CH4; hydrogen, H2) to minor (C2-C6 alkanes) fuel gas components. The characteristic peaks of H2 (585 cm-1), CH4 (2917 cm-1), isopentane (765 cm-1), i-butane (798 cm-1), n-butane (830 cm-1), n-pentane (840 cm-1), propane (869 cm-1), ethane (993 cm-1), and n-hexane (1038 cm-1) are well resolved in the broadband spectra acquired with a compact spectrometer. The fiber enhancement achieved in a hollow-core antiresonant fiber enables highly sensitive measurements with limits of detection between 90 and 180 ppm for different hydrocarbons. Both methane and hydrogen were quantified with high accuracy with average relative errors of 1.1% for CH4 and 1.5% for H2 over a wide concentration range. These results show that FERS is ideally suited for comprehensive fuel gas analysis in a future, where regenerative sources lead to fluctuations in the composition of gas.
Collapse
Affiliation(s)
- Andreas Knebl
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, Jena 07745, Germany
| | - Christian Domes
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, Jena 07745, Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, Jena 07745, Germany
| | - Sebastian Wolf
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, Jena 07745, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, Jena 07745, Germany.,Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University, Jena 07745, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, Jena 07745, Germany.,Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University, Jena 07745, Germany.,Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstraße 25, Darmstadt 64283, Germany
| |
Collapse
|
10
|
Blohm A, Kumar S, Knebl A, Herrmann M, Küsel K, Popp J, Frosch T. Activity and electron donor preference of two denitrifying bacterial strains identified by Raman gas spectroscopy. Anal Bioanal Chem 2021; 414:601-611. [PMID: 34297136 PMCID: PMC8748363 DOI: 10.1007/s00216-021-03541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Human activities have greatly increased the input of reactive nitrogen species into the environment and disturbed the balance of the global N cycle. This imbalance may be offset by bacterial denitrification, an important process in maintaining the ecological balance of nitrogen. However, our understanding of the activity of mixotrophic denitrifying bacteria is not complete, as most research has focused on heterotrophic denitrification. The aim of this study was to investigate substrate preferences for two mixotrophic denitrifying bacterial strains, Acidovorax delafieldii and Hydrogenophaga taeniospiralis, under heterotrophic, autotrophic or mixotrophic conditions. This complex analysis was achieved by simultaneous identification and quantification of H2, O2, CO2, 14N2, 15N2 and 15N2O in course of the denitrification process with help of cavity-enhanced Raman spectroscopic (CERS) multi-gas analysis. To disentangle electron donor preferences for both bacterial strains, microcosm-based incubation experiments under varying substrate conditions were conducted. We found that Acidovorax delafieldii preferentially performed heterotrophic denitrification in the mixotrophic sub-experiments, while Hydrogenophaga taeniospiralis preferred autotrophic denitrification in the mixotrophic incubation. These observations were supported by stoichiometric calculations. The results demonstrate the prowess of advanced Raman multi-gas analysis to study substrate use and electron donor preferences in denitrification, based on the comprehensive quantification of complex microbial gas exchange processes.
Collapse
Affiliation(s)
- Annika Blohm
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Swatantar Kumar
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Andreas Knebl
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Martina Herrmann
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
- Abbe Centre of Photonics, Friedrich Schiller University, 07743, Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany.
- Abbe Centre of Photonics, Friedrich Schiller University, 07743, Jena, Germany.
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstraße 25, 64283, Darmstadt, Germany.
| |
Collapse
|
11
|
Potthast K, Meyer S, Tischer A, Gleixner G, Sieburg A, Frosch T, Michalzik B. Grasshopper herbivory immediately affects element cycling but not export rates in an N‐limited grassland system. Ecosphere 2021. [DOI: 10.1002/ecs2.3449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Karin Potthast
- Institute of Geography/Chair of Soil Science Friedrich Schiller University Jena Löbdergraben 32 Jena07743Germany
| | - Stefanie Meyer
- Medical Center LMU Munich Ziemssenstraße 1 Munchen80336Germany
| | - Alexander Tischer
- Institute of Geography/Chair of Soil Science Friedrich Schiller University Jena Löbdergraben 32 Jena07743Germany
| | - Gerd Gleixner
- Research Group of Molecular Biogeochemistry MPI for Biogeochemistry Hans‐Knöll‐Straße 10 Jena07745Germany
| | - Anne Sieburg
- Leibniz Institute of Photonic Technology Jena07745Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology Jena07745Germany
- Institute of Physical Chemistry and Abbe Centre of Photonics Friedrich Schiller University Jena Jena07745Germany
| | - Beate Michalzik
- Institute of Geography/Chair of Soil Science Friedrich Schiller University Jena Löbdergraben 32 Jena07743Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| |
Collapse
|
12
|
Tuesta AD, Fisher BT, Skiba AW, Williams LT, Osborn MF. Low-pressure multipass Raman spectrometer. APPLIED OPTICS 2021; 60:773-784. [PMID: 33690456 DOI: 10.1364/ao.412054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Nonintrusive, quantitative measurements of thermodynamic properties of flows associated with propulsion systems are pivotal to advance their design and optimization. Laser-based diagnostics are ideal to provide quantitative results without influencing the flow; however, the environments in which such flows exist are often not conducive for such techniques. Namely, they often lack the optical accessibility required to facilitate the delivery of incident laser radiation and the subsequent collection of induced signals. A particularly challenging, yet crucial, task is to measure thermodynamic properties of plumes issuing from thrusters operating within a vacuum chamber. Large chambers used to simulate the vacuum of space generally lack optical ports that can facilitate complex laser-based measurements. Additionally, the near-vacuum environments within such chambers coupled with the ability of thrusters to efficiently expand the gas flowing through their nozzles lead to plumes with prohibitively low number densities (pressures below 1 Torr). Thus, there is a need to develop a diagnostic system that can offer high throughput without the use of free-space optical ports. Moreover, facilities where propulsion systems are tested typically lack vibrationally isolated space for diagnostic equipment and accurate climate control. As a result, such a high-throughput system must also be compact, versatile, and robust. To this end, the present work describes a fiber-coupled, multipass cell, spontaneous Raman scattering spectroscopy system. This system is intended to provide accurate temperature measurements within low-pressure environments via H2 rotational Raman thermometry. Proof-of-principle measurements are successfully performed at pressures as low as 67 Pa (500 mTorr). Techniques to maintain the signal-to-noise ratio at lower pressures, and the trade-offs associated with them, are discussed and evaluated. Finally, the ability of this system to facilitate additional quantitative measurements is also discussed.
Collapse
|
13
|
Knebl A, Domes R, Wolf S, Domes C, Popp J, Frosch T. Fiber-Enhanced Raman Gas Spectroscopy for the Study of Microbial Methanogenesis. Anal Chem 2020; 92:12564-12571. [PMID: 32845132 DOI: 10.1021/acs.analchem.0c02507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbial methanogenesis is a key biogeochemical process in the carbon cycle that is responsible for 70% of global emissions of the potent greenhouse gas methane (CH4). Further knowledge about microbial methanogenesis is crucial to mitigate emissions, increase climate model accuracy, or advance methanogenic biogas production. The current understanding of the substrate use of methanogenic microbes is limited, especially regarding the methylotrophic pathway. Here, we present fiber-enhanced Raman spectroscopy (FERS) of headspace gases as an alternate tool to study methanogenesis and substrate use in particular. The optical technique is nondestructive and sensitive to CH4, hydrogen (H2), and carbon dioxide with a large dynamic range from trace levels (demonstrated LoDs: CH4, 3 ppm; H2, 49 ppm) to pure gases. In addition, the portable FERS system can provide quantitative information about methanol concentration in the liquid phase of microbial cultures through headspace gas sampling (LoD 25 ppm). We demonstrate how FERS gas sensing could enable us to track substrate and product levels of microbial methanogenesis with just one instrument. The versatility of Raman gas spectroscopy could moreover help us to elucidate links between nitrogen and carbon cycle in microbial communities in the near future.
Collapse
Affiliation(s)
- Andreas Knebl
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Sebastian Wolf
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Christian Domes
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany.,Friedrich Schiller University, Institute of Physical Chemistry, 07743 Jena, Germany.,Friedrich Schiller University, Abbe Center of Photonics, 07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany.,Friedrich Schiller University, Institute of Physical Chemistry, 07743 Jena, Germany.,Friedrich Schiller University, Abbe Center of Photonics, 07745 Jena, Germany
| |
Collapse
|
14
|
Wang P, Chen W, Wang J, Tang J, Shi Y, Wan F. Multigas Analysis by Cavity-Enhanced Raman Spectroscopy for Power Transformer Diagnosis. Anal Chem 2020; 92:5969-5977. [PMID: 32216282 DOI: 10.1021/acs.analchem.0c00179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We demonstrate the utility of cavity-enhanced Raman spectroscopy (CERS) as a unique multigas analysis tool for power transformer diagnosis. For this purpose, improvements have been added to our recently introduced CERS apparatus. Based on optical feedback frequency-locking, laser radiation is coupled into a high-finesse optical cavity, thus resulting in huge intracavity laser power. With 20 s exposure time, ppm-level gas sensing at 1 bar total pressure is achieved, including carbon dioxide (CO2), carbon monoxide (CO), hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), nitrogen (N2), and oxygen (O2). By using the internal standard gas (sulfur hexafluoride, SF6), the quantification of multigas with high accuracy is also realized, which is confirmed by the measurement of calibration gases. For fault diagnosis, transformer oil is sampled from a 110 kV power transformer in service. Dissolved gases are extracted and analyzed by the CERS apparatus. Then the transformer is diagnosed according to the measurement results. CERS has the ability to analyze multigas with high selectivity, sensitivity, and accuracy, it has great potential in gas sensing fields.
Collapse
Affiliation(s)
- Pinyi Wang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, No. 174, Shazheng Street, Chongqing, 400044, China
| | - Weigen Chen
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, No. 174, Shazheng Street, Chongqing, 400044, China
| | - Jianxin Wang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, No. 174, Shazheng Street, Chongqing, 400044, China
| | - Jun Tang
- State Grid Sichuan Electric Power Company, No. 18, Jiaozi North Second Road, Chengdu, 610041, China
| | - Yongli Shi
- China Southern Power Grid Company Limited, No. 137, Guanshan West Road, Guiyang, 550081, China
| | - Fu Wan
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, No. 174, Shazheng Street, Chongqing, 400044, China
| |
Collapse
|
15
|
Rapid Raman Spectroscopic Analysis of Stress Induced Degradation of the Pharmaceutical Drug Tetracycline. Molecules 2020; 25:molecules25081866. [PMID: 32316681 PMCID: PMC7221697 DOI: 10.3390/molecules25081866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Stress factors caused by inadequate storage can induce the unwanted degradation of active compounds in pharmaceutical formulations. Resonance Raman spectroscopy is presented as an analytical tool for rapid monitoring of small concentration changes of tetracycline and the metabolite 4˗epianhydrotetracycline. These degradation processes were experimentally induced by changes in temperature, humidity, and irradiation with visible light over a time period of up to 23 days. The excitation wavelength λexc = 413 nm was proven to provide short acquisition times for the simultaneous Raman spectroscopic detection of the degradation of tetracycline and production of its impurity in small sample volumes. Small concentration changes could be detected (down to 1.4% for tetracycline and 0.3% for 4-epianhydrotetracycline), which shows the potential of resonance Raman spectroscopy for analyzing the decomposition of pharmaceutical products.
Collapse
|
16
|
Wolf S, Frosch T, Popp J, Pletz MW, Frosch T. Highly Sensitive Detection of the Antibiotic Ciprofloxacin by Means of Fiber Enhanced Raman Spectroscopy. Molecules 2019; 24:molecules24244512. [PMID: 31835489 PMCID: PMC6943513 DOI: 10.3390/molecules24244512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Sepsis and septic shock exhibit a rapid course and a high fatality rate. Antibiotic treatment is time-critical and precise knowledge of the antibiotic concentration during the patients’ treatment would allow individual dose adaption. Over- and underdosing will increase the antimicrobial efficacy and reduce toxicity. We demonstrated that fiber enhanced Raman spectroscopy (FERS) can be used to detect very low concentrations of ciprofloxacin in clinically relevant doses, down to 1.5 µM. Fiber enhancement was achieved in bandgap shifted photonic crystal fibers. The high linearity between the Raman signals and the drug concentrations allows a robust calibration for drug quantification. The needed sample volume was very low (0.58 µL) and an acquisition time of 30 s allowed the rapid monitoring of ciprofloxacin levels in a less invasive way than conventional techniques. These results demonstrate that FERS has a high potential for clinical in-situ monitoring of ciprofloxacin levels.
Collapse
Affiliation(s)
- Sebastian Wolf
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Timea Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University, 07743 Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University, 07745 Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, University Hospital, 07747 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University, 07743 Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University, 07745 Jena, Germany
- Correspondence: or
| |
Collapse
|
17
|
Frosch T, Wyrwich E, Yan D, Popp J, Frosch T. Fiber-Array-Based Raman Hyperspectral Imaging for Simultaneous, Chemically-Selective Monitoring of Particle Size and Shape of Active Ingredients in Analgesic Tablets. Molecules 2019; 24:E4381. [PMID: 31801249 PMCID: PMC6930444 DOI: 10.3390/molecules24234381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 11/20/2022] Open
Abstract
The particle shape, size and distribution of active pharmaceutical ingredients (API) are relevant quality indicators of pharmaceutical tablets due to their high impact on the manufacturing process. Furthermore, the bioavailability of the APIs from the dosage form depends largely on these characteristics. Routinely, particle size and shape are only analyzed in the powder form, without regard to the effect of the formulation procedure on the particle characteristics. The monitoring of these parameters improves the understanding of the process; therefore, higher quality and better control over the biopharmaceutical profile can be ensured. A new fiber-array-based Raman hyperspectral imaging technique is presented for direct simultaneous in-situ monitoring of three different active pharmaceutical ingredients- acetylsalicylic acid, acetaminophen and caffeine- in analgesic tablets. This novel method enables a chemically selective, noninvasive assessment of the distribution of the active ingredients down to 1 µm spatial resolution. The occurrence of spherical and needle-like particles, as well as agglomerations and the respective particle size ranges, were rapidly determined for two commercially available analgesic tablet types. Subtle differences were observed in comparison between these two tablets. Higher amounts of acetaminophen were visible, more needle-shaped and bigger acetylsalicylic acid particles, and a higher incidence of bigger agglomerations were found in one of the analgesic tablets.
Collapse
Affiliation(s)
- Timea Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany; (T.F.); (E.W.); (D.Y.); (J.P.)
| | - Elisabeth Wyrwich
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany; (T.F.); (E.W.); (D.Y.); (J.P.)
| | - Di Yan
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany; (T.F.); (E.W.); (D.Y.); (J.P.)
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany; (T.F.); (E.W.); (D.Y.); (J.P.)
- Institute of Physical Chemistry, Friedrich Schiller University, 07743 Jena, Germany
- Abbe Centre of Photonics, Friedrich Schiller University, 07745 code Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany; (T.F.); (E.W.); (D.Y.); (J.P.)
- Institute of Physical Chemistry, Friedrich Schiller University, 07743 Jena, Germany
- Abbe Centre of Photonics, Friedrich Schiller University, 07745 code Jena, Germany
| |
Collapse
|
18
|
Le VH, Caumon MC, Tarantola A, Randi A, Robert P, Mullis J. Quantitative Measurements of Composition, Pressure, and Density of Microvolumes of CO2–N2 Gas Mixtures by Raman Spectroscopy. Anal Chem 2019; 91:14359-14367. [DOI: 10.1021/acs.analchem.9b02803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Van-Hoan Le
- Université de Lorraine, CNRS, GeoResssources Laboratory, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Marie-Camille Caumon
- Université de Lorraine, CNRS, GeoResssources Laboratory, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Alexandre Tarantola
- Université de Lorraine, CNRS, GeoResssources Laboratory, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Aurélien Randi
- Université de Lorraine, CNRS, GeoResssources Laboratory, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Pascal Robert
- Université de Lorraine, CNRS, GeoResssources Laboratory, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Josef Mullis
- Mineralogisch-Petrographisches Institut, Bernoullistrasse 30, CH-4056 Basel, Switzerland
| |
Collapse
|
19
|
Sieburg A, Knebl A, Jacob JM, Frosch T. Characterization of fuel gases with fiber-enhanced Raman spectroscopy. Anal Bioanal Chem 2019; 411:7399-7408. [DOI: 10.1007/s00216-019-02145-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
|
20
|
Frosch T, Wyrwich E, Yan D, Domes C, Domes R, Popp J, Frosch T. Counterfeit and Substandard Test of the Antimalarial Tablet Riamet ® by Means of Raman Hyperspectral Multicomponent Analysis. Molecules 2019; 24:molecules24183229. [PMID: 31491881 PMCID: PMC6767462 DOI: 10.3390/molecules24183229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
The fight against counterfeit pharmaceuticals is a global issue of utmost importance, as failed medication results in millions of deaths every year. Particularly affected are antimalarial tablets. A very important issue is the identification of substandard tablets that do not contain the nominal amounts of the active pharmaceutical ingredient (API), and the differentiation between genuine products and products without any active ingredient or with a false active ingredient. This work presents a novel approach based on fiber-array based Raman hyperspectral imaging to qualify and quantify the antimalarial APIs lumefantrine and artemether directly and non-invasively in a tablet in a time-efficient way. The investigations were carried out with the antimalarial tablet Riamet® and self-made model tablets, which were used as examples of counterfeits and substandard. Partial least-squares regression modeling and density functional theory calculations were carried out for quantification of lumefantrine and artemether and for spectral band assignment. The most prominent differentiating vibrational signatures of the APIs were presented.
Collapse
Affiliation(s)
- Timea Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | | | - Di Yan
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Christian Domes
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Friedrich Schiller University, Institute of Physical Chemistry, 07745 Jena, Germany
- Friedrich Schiller University, Abbe Centre of Photonics, 07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany.
- Friedrich Schiller University, Institute of Physical Chemistry, 07745 Jena, Germany.
- Friedrich Schiller University, Abbe Centre of Photonics, 07745 Jena, Germany.
| |
Collapse
|
21
|
Knebl A, Domes R, Yan D, Popp J, Trumbore S, Frosch T. Fiber-Enhanced Raman Gas Spectroscopy for 18O- 13C-Labeling Experiments. Anal Chem 2019; 91:7562-7569. [PMID: 31050402 DOI: 10.1021/acs.analchem.8b05684] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stable isotopes are used in ecology to track and disentangle different processes and pathways. Especially for studies focused on the gas exchange of plants, sensing techniques that offer oxygen (O2) and carbon dioxide (CO2) sensitivity with isotopic discrimination are highly sought after. Addressing this challenge, fiber-enhanced Raman gas spectroscopy is introduced as a fast optical technique directly combining 13CO2 and 12CO2 as well as 18O2 and 16O2 measurements in one instrument. We demonstrate how a new type of optical hollow-core fiber, the so-called revolver fiber, is utilized for enhanced Raman gas sensing. Carbon dioxide and oxygen isotopologues were measured at concentrations expected when using 13C- and 18O-labeled gases in plant experiments. Limits of detection have been determined to be 25 ppm for CO2 and 150 ppm for O2. The combination of measurements with different integration times allows the creation of highly resolved broadband spectra. With the help of calculations based on density functional theory, the line at 1512 cm-1 occurring in the oxygen spectrum is assigned to 18O16O. The relative abundances of the isotopologues 18O16O and nitrogen 15N14N were in good agreement with typical values. For CO2, fiber-enhanced Raman spectra show the Fermi diad and hotbands of 12C16O2, 13C16O2, and 12C18O16O. Several weak lines were observed, and the line at 1426 cm-1 was identified as originating from the (0 4 0 2) → (0 2 0 2) transition of 12C16O2. With the demonstrated sensitivity and discriminatory power, fiber-enhanced Raman spectroscopy is a possible alternative means to investigate plant metabolism, directly combining 13CO2 and 12CO2 measurements with 18O2 and 16O2 measurements in one instrument. The presented method thus has large potential for basic analytical investigations as well as for applications in the environmental sciences.
Collapse
Affiliation(s)
- Andreas Knebl
- Leibniz Institute of Photonic Technology , 07745 Jena , Germany.,Max-Planck-Institute for Biogeochemistry , 07745 Jena , Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology , 07745 Jena , Germany
| | - Di Yan
- Leibniz Institute of Photonic Technology , 07745 Jena , Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology , 07745 Jena , Germany.,Institute of Physical Chemistry & Abbe Center of Photonics , Friedrich Schiller University , 07743 Jena , Germany
| | - Susan Trumbore
- Max-Planck-Institute for Biogeochemistry , 07745 Jena , Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology , 07745 Jena , Germany.,Institute of Physical Chemistry & Abbe Center of Photonics , Friedrich Schiller University , 07743 Jena , Germany
| |
Collapse
|
22
|
Weller L, Kuvshinov M, Hochgreb S. Gas-phase Raman spectroscopy of non-reacting flows: comparison between free-space and cavity-based spontaneous Raman emission. APPLIED OPTICS 2019; 58:C92-C103. [PMID: 31045056 DOI: 10.1364/ao.58.000c92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
We report on a comparison of free-space and cavity-enhanced Raman spectroscopy for gas-phase measurements of nitrogen and oxygen in ambient air. Real-time analysis capabilities and continuous Raman signals with low power diodes make the technique non-invasive, affordable, compact, and applicable for usage in non-reacting flows. We derive a comprehensive model for estimation of photon emission for both free-space and cavity-based signals and discuss trade-offs in how to organize the cavity geometry for maximum gain relative to free space. Measurements in both free and cavity configurations are compared to the expected signals, demonstrating the usefulness of the model in predicting amplification. The present results can serve as a quick guide on how to use low-power continuous wave lasers in a cavity setup to obtain enhanced laser-induced spontaneous Raman scattering.
Collapse
|
23
|
Yan D, Frosch T, Kobelke J, Bierlich J, Popp J, Pletz MW, Frosch T. Fiber-Enhanced Raman Sensing of Cefuroxime in Human Urine. Anal Chem 2018; 90:13243-13248. [PMID: 30387601 DOI: 10.1021/acs.analchem.8b01355] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fiber-enhanced Raman spectroscopy was developed for the chemically selective and sensitive quantification of the important antibiotic cefuroxime in human urine. A novel optical sensor fiber was drawn and precisely prepared. In this fiber structure, light is strongly confined in the selectively filled liquid core, and the Raman scattered signal is collected with unprecedented efficiency over an extended interaction length. The filling, emptying, and robustness are highly improved due to the large core size (>30 μm). Broadband step-index guidance allows the free choice of the most suitable excitation wavelength in complex body fluids. The limit of detection of cefuroxime in human urine was improved by 2 orders of magnitude (to μM level). The quantification of cefuroxime was achieved in urine after oral administration. This method has great potential for the point-of-care monitoring of antibiotics concentrations and is an important step forward to enable clinicians to rapidly adjust doses.
Collapse
Affiliation(s)
- Di Yan
- Leibniz Institute of Photonic Technology , Jena 07745 , Germany
| | - Timea Frosch
- Leibniz Institute of Photonic Technology , Jena 07745 , Germany
| | - Jens Kobelke
- Leibniz Institute of Photonic Technology , Jena 07745 , Germany
| | - Jörg Bierlich
- Leibniz Institute of Photonic Technology , Jena 07745 , Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology , Jena 07745 , Germany.,Friedrich Schiller University , Institute of Physical Chemistry , Jena 07743 , Germany.,Friedrich Schiller University , Abbe Centre of Photonics , Jena 07745 , Germany
| | - Mathias W Pletz
- Center for Infectious Diseases and Infection Control , Jena University Hospital , Jena 07740 , Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology , Jena 07745 , Germany.,Friedrich Schiller University , Institute of Physical Chemistry , Jena 07743 , Germany.,Friedrich Schiller University , Abbe Centre of Photonics , Jena 07745 , Germany
| |
Collapse
|
24
|
Sieburg A, Jochum T, Trumbore SE, Popp J, Frosch T. Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth's critical zone. Analyst 2018; 142:3360-3369. [PMID: 28853462 DOI: 10.1039/c7an01149k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman gas spectrometry is introduced as a robust, versatile method for onsite, battery-powered field measurements of gases in the unsaturated and saturated critical zone. In this study, depth-profiles of the concentrations of oxygen and carbon dioxide were simultaneously monitored down to ∼70 meters depth in the subsurface via a transect of drilling holes located in the Hainich Critical Zone Exploratory in central Germany. A special multichannel monitoring system was designed to access and analyze these gases non-consumptively onsite in a closed loop measurement cycle. During the timeframe of six months, seasonal changes in groundwater levels and microbial activity were related to changes observed in gas concentrations. High oxygen concentrations were found in the depths surrounding a karstified aquifer complex, while low oxygen concentrations were found in a fractured aquifer complex. Raman gas depth-profiles complement standard dissolved oxygen measurements as they also deliver oxygen concentrations in the unsaturated zone. The measured depth-profiles of the gas concentrations indicated that regions of anoxia can exist between the aquifer complexes. Lateral transport of O2 in the deeper aquifer complex provides a local source of O2 that can influence metabolism. Correlations were found between the observed CO2 concentrations and pH-values, indicating strong control of carbonate equilibria. The concentrations of O2 and CO2 were largely decoupled, thus simultaneous measurements of O2 soil effluxes give additional insights into biotic and abiotic processes in the Hainich CZE. These results illustrate the versatility of robust onsite Raman multigas measurements of the soil atmosphere and how they can contribute to the analysis of complex processes in previous uncharacterized environments in the critical zone.
Collapse
Affiliation(s)
- Anne Sieburg
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany.
| | | | | | | | | |
Collapse
|
25
|
Kumar S, Herrmann M, Blohm A, Hilke I, Frosch T, Trumbore SE, Küsel K. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol Ecol 2018; 94:5056153. [DOI: 10.1093/femsec/fiy141] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Swatantar Kumar
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Martina Herrmann
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Annika Blohm
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
| | - Ines Hilke
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Albert-Einstein-Strasse 6, D-07745, Jena, Germany
| | - Susan E Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| |
Collapse
|
26
|
|
27
|
Sieburg A, Schneider S, Yan D, Popp J, Frosch T. Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy. Analyst 2018; 143:1358-1366. [DOI: 10.1039/c7an01689a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cavity-enhanced Raman spectroscopy is a powerful tool for online detection of multiple gases during the process of biogas production.
Collapse
Affiliation(s)
- Anne Sieburg
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
| | | | - Di Yan
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Friedrich Schiller University
- Institute of Physical Chemistry
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Friedrich Schiller University
- Institute of Physical Chemistry
| |
Collapse
|
28
|
Yan D, Popp J, Frosch T. Analysis of Fiber-Enhanced Raman Gas Sensing Based on Raman Chemical Imaging. Anal Chem 2017; 89:12269-12275. [DOI: 10.1021/acs.analchem.7b03209] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Di Yan
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Friedrich Schiller University, Institute of Physical
Chemistry, 07743 Jena, Germany
- Friedrich Schiller University, Abbe Center of Photonics, 07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Friedrich Schiller University, Institute of Physical
Chemistry, 07743 Jena, Germany
- Friedrich Schiller University, Abbe Center of Photonics, 07745 Jena, Germany
| |
Collapse
|
29
|
Domes C, Domes R, Popp J, Pletz MW, Frosch T. Ultrasensitive Detection of Antiseptic Antibiotics in Aqueous Media and Human Urine Using Deep UV Resonance Raman Spectroscopy. Anal Chem 2017; 89:9997-10003. [PMID: 28840713 DOI: 10.1021/acs.analchem.7b02422] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Deep UV resonance Raman spectroscopy is introduced as an analytical tool for ultrasensitive analysis of antibiotics used for empirical treatment of patients with sepsis and septic shock, that is, moxifloxacin, meropenem, and piperacillin in aqueous solution and human urine. By employing the resonant excitation wavelengths λexc = 244 nm and λexc = 257 nm, only a small sample volume and short acquisition times are needed. For a better characterization of the matrix urine, the main ingredients were investigated. The capability of detecting the antibiotics in clinically relevant concentrations in aqueous media (LODs: 13.0 ± 1.4 μM for moxifloxacin, 43.6 ± 10.7 μM for meropenem, and 7.1 ± 0.6 μM for piperacillin) and in urine (LODs: 36.6 ± 11.0 μM for moxifloxacin, and 114.8 ± 3.1 μM for piperacillin) points toward the potential of UV Raman spectroscopy as point-of-care method for therapeutic drug monitoring (TDM). This procedure enables physicians to achieve fast adequate dosing of antibiotics to improve the outcome of patients with sepsis.
Collapse
Affiliation(s)
- Christian Domes
- Leibniz Institute of Photonic Technology , Jena 07745, Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology , Jena 07745, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology , Jena 07745, Germany.,Friedrich Schiller University , Institute for Physical Chemistry, Jena 07743, Germany.,Friedrich Schiller University , Abbe Centre of Photonics, Jena 07745, Germany
| | - Mathias W Pletz
- Center for Infectious Diseases and Infection Control, Jena University Hospital , Jena 07743, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology , Jena 07745, Germany.,Friedrich Schiller University , Institute for Physical Chemistry, Jena 07743, Germany.,Friedrich Schiller University , Abbe Centre of Photonics, Jena 07745, Germany
| |
Collapse
|
30
|
Jochum T, Rahal L, Suckert RJ, Popp J, Frosch T. All-in-one: a versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening. Analyst 2017; 141:2023-9. [PMID: 26882863 DOI: 10.1039/c5an02120k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In today's fruit conservation rooms the ripening of harvested fruit is delayed by precise management of the interior oxygen (O2) and carbon dioxide (CO2) levels. Ethylene (C2H4), a natural plant hormone, is commonly used to trigger fruit ripening shortly before entering the market. Monitoring of these critical process gases, also of the increasingly favored cooling agent ammonia (NH3), is a crucial task in modern postharvest fruit management. The goal of this work was to develop and characterize a gas sensor setup based on fiber enhanced Raman spectroscopy for fast (time resolution of a few minutes) and non-destructive process gas monitoring throughout the complete postharvest production chain encompassing storage and transport in fruit conservation chambers as well as commercial fruit ripening in industrial ripening rooms. Exploiting a micro-structured hollow-core photonic crystal fiber for analyte gas confinement and sensitivity enhancement, the sensor features simultaneous quantification of O2, CO2, NH3 and C2H4 without cross-sensitivity in just one single measurement. Laboratory measurements of typical fruit conservation gas mixtures showed that the sensor is capable of quantifying O2 and CO2 concentration levels with accuracy of 3% or less with respect to reference concentrations. The sensor detected ammonia concentrations, relevant for chemical alarm purposes. Due to the high spectral resolution of the gas sensor, ethylene could be quantified simultaneously with O2 and CO2 in a multi-component mixture. These results indicate that fiber enhanced Raman sensors have a potential to become universally usable on-site gas sensors for controlled atmosphere applications in postharvest fruit management.
Collapse
Affiliation(s)
- Tobias Jochum
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Leila Rahal
- Leibniz Institute of Photonic Technology, Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany.
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Jena, Germany and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
31
|
Domes R, Domes C, Albert CR, Bringmann G, Popp J, Frosch T. Vibrational spectroscopic characterization of arylisoquinolines by means of Raman spectroscopy and density functional theory calculations. Phys Chem Chem Phys 2017; 19:29918-29926. [DOI: 10.1039/c7cp05415g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Seven new AIQ antimalarial agents were investigated using FT-NIR and deep-UV resonance Raman spectroscopy.
Collapse
Affiliation(s)
- Robert Domes
- Leibniz Institute of Photonic Technology
- Jena
- Germany
| | | | | | - Gerhard Bringmann
- Julius-Maximilians University
- Institute of Organic Chemistry
- Würzburg
- Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology
- Jena
- Germany
- Friedrich Schiller University
- Institute for Physical Chemistry
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology
- Jena
- Germany
- Friedrich Schiller University
- Institute for Physical Chemistry
| |
Collapse
|
32
|
Jochum T, Fastnacht A, Trumbore SE, Popp J, Frosch T. Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity. Anal Chem 2016; 89:1117-1122. [PMID: 28043118 DOI: 10.1021/acs.analchem.6b03101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)-1 h-1 of a Medicago sativa-Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.
Collapse
Affiliation(s)
- Tobias Jochum
- Leibniz Institute of Photonic Technology , 07745 Jena, Germany
| | - Agnes Fastnacht
- Max Planck Institute for Biogeochemistry , 07745 Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology , 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , 07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology , 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , 07745 Jena, Germany
| |
Collapse
|