1
|
Ren L, Cao S, Guo L, Li J, Jiao K, Wang L. Recent advances in nucleic acid-functionalized metallic nanoparticles. Chem Commun (Camb) 2025; 61:4904-4923. [PMID: 40047804 DOI: 10.1039/d5cc00359h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nucleic acid-functionalized metallic nanoparticles (N-MNPs) precisely integrate the advantageous characteristics of nucleic acids and metallic nanomaterials, offering various abilities such as resistance to enzymatic degradation, penetration of physiological barriers, controllable mobility, biomolecular recognition, programmable self-assembly, and dynamic structure-function transformation. These properties demonstrate significant potential in the field of biomedical diagnostics and therapeutics. In this review, we examine recent advancements in the construction and theranostic applications of N-MNPs. We briefly summarize the methodologies employed in the conjugation of nucleic acids with metallic nanoparticles and the formation of their superstructural assemblies. We highlight recent representative applications of N-MNPs in biomolecular diagnosis, imaging, and smart delivery of theranostic agents. We also discuss challenges currently faced in this field and provide an outlook on future development directions and application prospects.
Collapse
Affiliation(s)
- Lei Ren
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Shuting Cao
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan 314102, Zhejiang, China
- Nano-translational Medicine Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Zhan J, Wang S, Li X, Zhang J. Molecular engineering of functional DNA molecules toward point-of-care diagnostic devices. Chem Commun (Camb) 2025; 61:4316-4338. [PMID: 39998439 DOI: 10.1039/d5cc00338e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The pursuit of rapid, sensitive, and specific diagnostic methodologies is imperative across diverse applications, including the detection of pathogens and disease biomarkers, food safety testing and environmental monitoring. Point-of-care testing (POCT) is characterized by its portability, ease of use, rapidity, and affordability, emerging as an attractive alternative for traditional diagnostics. Over recent years, the incorporation of functional DNA (fDNA) into POC diagnostic devices has emerged as a groundbreaking advancement, significantly enhancing sensitivity, specificity, and user-friendliness. In this review, we explore the innovative applications of fDNA in POC devices, highlighting its potential to revolutionize diagnostics by providing rapid, portable, and precise solutions. We discuss the unique advantages of fDNA, including its stability in complex biological matrices and its ability to recognize a wide range of targets. Furthermore, we explore the potential synergy between fDNA and cutting-edge technologies, such as nanotechnology and artificial intelligence (AI), to forge a path toward more personalized and accessible healthcare solutions. Despite significant progress, challenges remain in translating these innovations from the bench to the clinic. This review aims to provide a comprehensive overview of the current status of fDNA-based POCT devices and future directions for their development, emphasizing their critical role in meeting the global demand for accessible, efficient, and precise diagnostic solutions.
Collapse
Affiliation(s)
- Jiayin Zhan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| | - Siyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Xiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Wang Q, Luo YJ, Su GL, Xie JL, Mao K, Huang CZ, Li YF, Zhou J, Zou HY, Zhen SJ. A novel triple signal amplification platform of peroxide test strip for sensitive detection of adenosine triphosphate. Talanta 2025; 284:127263. [PMID: 39591865 DOI: 10.1016/j.talanta.2024.127263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Peroxide test strip (PTS) has been widely used for the point-of-care testing (POCT), but its poor sensitivity is a big obstacle for analyzing trace target. Herein, a triple signal amplifying platform integrating the liposome enrichment, the hybridization chain reaction (HCR) circuit, and the image analysis method was constructed to enhance the visual readout of PTS for the sensitive detection of adenosine triphosphate (ATP), an important biomarker of food spoilage. In the presence of ATP, the HCR amplifier was firstly initiated on the surface of magnetic beads (MBs), inducing a large number of glucose oxidase (GOD) imbedded liposomes to be attached. After the magnetic separation, the linked liposomes were destroyed and the enriched GOD was released to react with glucose to produce H2O2, which can enhance the color change of PTS. Finally, an image analysis method was developed to further amplify the colorimetric difference of human visual perception of PTS readout. This triple signal amplification strategy was used to detect ATP in the linear range from 50 to 250 nmol/L, and the limit of detection (LOD, 3σ/k) was 0.65 nmol/L. Finally, this method has been successfully applied for accurate and sensitive detection of ATP in watermelon juice, showing its great potential for quick determining whether food is spoiled.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu Jie Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Guo Liang Su
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| | - Jia Li Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kai Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, 400715, Chongqing, China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jun Zhou
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| | - Hong Yan Zou
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, 400715, Chongqing, China.
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Zhang T, Xu X, Pan Y, Yang H, Han J, Liu J, Liu W. Specific surface modification of liposomes for gut targeting of food bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:3685-3706. [PMID: 37548603 DOI: 10.1111/1541-4337.13224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Liposomes have become a research hotspot in recent years as food delivery systems with attractive properties, including the bilayer structure assembled like the cell membrane, reducing the side-effect and improving environmental stability of cargos, controlling release, extending duration of functional ingredients, and high biodegradable and biocompatible abilities in the body. However, the conventional liposomes lack stability during storage and are weak in targeted absorption in the gastrointestinal track. At present, surface modification has been approved to be an effective platform to shield these barricades and help liposomes deliver the agents safely and effectively to the ideal site. In this review, the gastrointestinal stability of conventional liposomes, cargo release models from liposomes, and the biological fate of the core materials after release were emphasized. Then, the strategies in both physical and chemical perspectives to improve the stability and utilization of liposomes in the gastrointestinal tract, and the emerging approaches for improving gut targeting by specifically modified liposomes and the intestinal receptors relative to liposomes/cargos absorption were highlighted. Last but not the least, the safety, challenges, and opportunities for the improvement of liposomal bioavailability were also discussed to inspire new applications of liposomes as oral carriers.
Collapse
Affiliation(s)
- Tingting Zhang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yujie Pan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Yang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
5
|
Zhang J, Lan T, Lu Y. Overcoming Major Barriers to Developing Successful Sensors for Practical Applications Using Functional Nucleic Acids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:151-171. [PMID: 35216531 PMCID: PMC9197978 DOI: 10.1146/annurev-anchem-061020-104216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
For many years, numerous efforts have been focused on the development of sensitive, selective, and practical sensors for environmental monitoring, food safety, and medical diagnostic applications. However, the transition from innovative research to commercial success is relatively sparse. In this review, we identify four scientific barriers and one technical barrier to developing successful sensors for practical applications, including the lack of general methods to (a) generate receptors for a wide range of targets, (b) improve sensor selectivity to overcome interferences, (c) transduce the selective binding to different optical, electrochemical, and other signals, and (d) tune dynamic range to match thresholds of detection required for different targets; and the costly development of a new device. We then summarize solutions to overcome these barriers using sensors based on functional nucleic acids that include DNAzymes, aptamers, and aptazymes and how these sensors are coupled to widely available measurement devices to expand their capabilities and lower the barrier for their practical applications in the field and point-of-care settings.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China;
| | - Tian Lan
- GlucoSentient, Inc., Champaign, Illinois, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
6
|
Sun L, Li C, Yan Y, Yu Y, Zhao H, Zhou Z, Wang F, Feng Y. Engineering DNA/Fe-N-C single-atom nanozymes interface for colorimetric biosensing of cancer cells. Anal Chim Acta 2021; 1180:338856. [PMID: 34538322 DOI: 10.1016/j.aca.2021.338856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Single atom nanozymes (SAzymes) represent the state-of-the-art technology in nanomaterial-based catalysis, which have attracted attentions in catalysis, cancer treatment, disinfection and biosensing fields. However, numerous SAzymes suffered from low aqueous dispersion and without recognition capacity, which impeded their applications in bioanalysis. Herein, we engineered DNA onto SAzymes to obtain the DNA/SAzymes conjugates, which significantly improved the aqueous dispersion and recognition ability of SAzymes. We synthesized iron SAzymes (Fe-N-C SAzymes) as the catalytic nanomaterials, and investigated the interactions between Fe-N-C SAzymes and DNA. We compared A15, T15 and C15 adsorption of Fe-N-C SAzymes in HEPES containing 2 mM MgCl2. We found that 50 μg mL-1 Fe-N-C SAzymes produced nearly 100% A15 adsorption, 90% T15 adsorption and only 69% C15 adsorption, indicating that adenine and thymine had higher adsorption affinity on Fe-N-C SAzymes. More importantly, DNA modification did not affect the peroxidase-like activity of Fe-N-C SAzymes and the bioactivity of the adsorbed DNA. Taking the advantage of the diblock DNA with one DNA sequence (adenine) binding to Fe-N-C SAzymes and the other DNA sequence (i.e., aptamer) binding to cancer cells, we designed Apt/Fe-N-C SAzymes for colorimetric detection of cancer cells, which offered new insights for the use of SAzymes in biomedicine.
Collapse
Affiliation(s)
- Liping Sun
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yong Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Zhao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zijue Zhou
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yi Feng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
7
|
Zhang Y, Wu W, Zhang J, Li Z, Ma H, Zhao Z. Facile Method for Specifically Sensing Sphingomyelinase in Cells and Human Urine Based on a Ratiometric Fluorescent Nanoliposome Probe. Anal Chem 2021; 93:11775-11784. [PMID: 34412477 DOI: 10.1021/acs.analchem.1c02197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingomyelinase (SMase) is closely related to diseases like Niemann-Pick disease and atherosclerosis, and the development of a simple method for the assay of SMase activity is very useful to screen new potential inhibitors or stimulators of SMase or biomarkers of disease. Fluorophore-encapsulated nanoliposomes (FENs) are emerging as a new fluorescent probe for sensing the enzymatic activity. In this work, two fluorochromes (cy7 and IR780) were encapsulated into the liposome of sphingomyelin, and therefore, a sphingomyelin-based ratiometric FEN probe for the SMase activity assay was constructed. The probe shows high selectivity and sensitivity to acid SMase with a detection limit of 4.8 × 10-4 U/mL. Sphingomyelin is the natural substrate of SMase; therefore, the probe has native ability for all kinds of SMase activity assays. Moreover, the probe has been successfully applied to the analysis of acid SMase activity in cells and urine samples. As far as we know, this is the first example of a nanoliposome fluorescence method for assaying acid SMase, and the method is biocompatible and much simpler than the existing ones, which might provide a new strategy for developing new methods for other important esterases.
Collapse
Affiliation(s)
- Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
9
|
Verma N, Thapa K, Dua K. Material and strategies used in oncology drug delivery. ADVANCED DRUG DELIVERY SYSTEMS IN THE MANAGEMENT OF CANCER 2021:47-62. [DOI: 10.1016/b978-0-323-85503-7.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Yan J, Tan YL, Lin MJ, Xing H, Jiang JH. A DNA-mediated crosslinking strategy to enhance cellular delivery and sensor performance of protein spherical nucleic acids. Chem Sci 2020; 12:1803-1809. [PMID: 34163943 PMCID: PMC8179099 DOI: 10.1039/d0sc04977h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intracellular delivery of enzymes is essential for protein-based diagnostic and therapeutic applications. Protein-spherical nucleic acids (ProSNAs) defined by protein core and dense shell of oligonucleotides have been demonstrated as a promising vehicle-free enzyme delivery platform. In this work, we reported a crosslinking strategy to vastly improve both delivery efficiency and intracellular sensor performance of ProSNA. By assembling individual ProSNA with lactate oxidase (LOX) core into a nanoscale particle, termed as crosslinked SNA (X-SNA), the enzyme delivery efficiency increased up to 5-6 times higher. The LOX X-SNA was later demonstrated as a ratiometric probe for quantitative detection of lactate in living cells. More importantly, X-SNA probe showed significantly improved sensor performance with signal-to-noise ratio 4 times as high as ProSNA when detecting intracellular lactate.
Collapse
Affiliation(s)
- Jing Yan
- Institute of Chemical Biology and Nanomedicine, Hunan University Changsha 410082 P. R. China .,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Ya-Ling Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Min-Jie Lin
- Institute of Chemical Biology and Nanomedicine, Hunan University Changsha 410082 P. R. China .,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, Hunan University Changsha 410082 P. R. China .,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine, Hunan University Changsha 410082 P. R. China .,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
11
|
Geng W, Zheng Z, Guo D. Supramolecular design based activatable magnetic resonance imaging. VIEW 2020. [DOI: 10.1002/viw.20200059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Wen‐Chao Geng
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin P. R. China
| | - Zhe Zheng
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin P. R. China
| | - Dong‐Sheng Guo
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin P. R. China
| |
Collapse
|
12
|
Saha S, Victorious A, Pandey R, Clifford A, Zhitomirsky I, Soleymani L. Differential Photoelectrochemical Biosensing Using DNA Nanospacers to Modulate Electron Transfer between Metal and Semiconductor Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36895-36905. [PMID: 32814377 DOI: 10.1021/acsami.0c09443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As dynamic biorecognition agents such as functional nucleic acids become widely used in biosensing, there is a need for ultrasensitive signal transduction strategies, beyond fluorescence, that are robust and stable for operation in heterogeneous biological samples. Photoelectrochemical readout offers a pathway toward this goal as it offers the simplicity and scalability of electrochemical readout, in addition to compatibility with a broad range of nanomaterials used as labels for signal transduction. Here, a differential photoelectrochemical biosensing approach is reported, in which DNA nanospacers are used to program the response of two sensing channels. The differences in the motional dynamics of DNA probes immobilized on different channels are used to control the interaction between Au and TiO2 nanoparticles positioned at the two ends of the DNA nanospacer to achieve differential signal generation. Depending on the composition of the DNA constructs (fraction of the DNA sequence i.e., double-stranded), the channels can be programmed to produce a signal-on or a signal-off response. Incident photon-to-current conversion efficiency, UV-vis spectroscopy, and flat-band potential measurement indicate that direct transfer of electrons between metallic and semiconductive nanoparticles is responsible for the signal-on response, and incident light absorption and steric hindrance are responsible for the signal-off response. The differential photoelectrochemical signal readout developed here increases the device sensitivity by up to three times compared to a single channel design and demonstrates a limit of detection of 800 aM.
Collapse
Affiliation(s)
- Sudip Saha
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Amanda Victorious
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Richa Pandey
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Amanda Clifford
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
13
|
Zhao D, Kong Y, Zhao S, Xing H. Engineering Functional DNA–Protein Conjugates for Biosensing, Biomedical, and Nanoassembly Applications. Top Curr Chem (Cham) 2020; 378:41. [DOI: 10.1007/s41061-020-00305-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
|
14
|
Jia X, Guo M, Han Q, Tian Y, Yuan Y, Wang Z, Qian Y, Wang W. Synergetic Tumor Probes for Facilitating Therapeutic Delivery by Combined-Functionalized Peptide Ligands. Anal Chem 2020; 92:5650-5655. [DOI: 10.1021/acs.analchem.0c00440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiangqian Jia
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Mingmei Guo
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qiuju Han
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Yuwei Tian
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yafei Yuan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zihua Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Yixia Qian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Weizhi Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
15
|
Zhang Y, Xiao JY, Zhu Y, Tian LJ, Wang WK, Zhu TT, Li WW, Yu HQ. Fluorescence Sensor Based on Biosynthetic CdSe/CdS Quantum Dots and Liposome Carrier Signal Amplification for Mercury Detection. Anal Chem 2020; 92:3990-3997. [DOI: 10.1021/acs.analchem.9b05508] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jing-Yu Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wei-Kang Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
16
|
Omolo CA, Megrab NA, Kalhapure RS, Agrawal N, Jadhav M, Mocktar C, Rambharose S, Maduray K, Nkambule B, Govender T. Liposomes with pH responsive 'on and off' switches for targeted and intracellular delivery of antibiotics. J Liposome Res 2019; 31:45-63. [PMID: 31663407 DOI: 10.1080/08982104.2019.1686517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
pH responsive drug delivery systems are one of the new strategies to address the spread of bacterial resistance to currently used antibiotics. The aim of this study was to formulate liposomes with 'On' and 'Off'' pH responsive switches for infection site targeting. The vancomycin (VCM) loaded liposomes had sizes below 100 nm, at pH 7.4. The QL-liposomes had a negative zeta potential at pH 7.4 that switched to a positive charge at acidic pH. VCM release from the liposome was quicker at pH 6 than pH 7.4. The OA-QL-liposome showed 4-fold lower MIC at pH 7.4 and 8- and 16-fold lower at pH 6.0 against both MSSA and MRSA compared to the bare drug. OA-QL liposome had a 1266.67- and 704.33-fold reduction in the intracellular infection for TPH-1 macrophage and HEK293 cells respectively. In vivo studies showed that the amount of MRSA recovered from mice treated with formulations was 189.67 and 6.33-fold lower than the untreated and bare VCM treated mice respectively. MD simulation of the QL lipid with the phosphatidylcholine membrane (POPC) showed spontaneous binding of the lipid to the bilayer membrane both electrostatic and Van der Waals interactions contributed to the binding. These studies demonstrated that the 'On' and 'Off' pH responsive liposomes enhanced the activity targeted and intracellular delivery VCM.
Collapse
Affiliation(s)
- Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Nagia A Megrab
- Department of Pharmaceutics and Industrial Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahantesh Jadhav
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Division of Emergency Medicine, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Kaminee Maduray
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongani Nkambule
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Li L, Xing H, Zhang J, Lu Y. Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications. Acc Chem Res 2019; 52:2415-2426. [PMID: 31411853 DOI: 10.1021/acs.accounts.9b00167] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nanoparticles (NPs) have enormous potential to improve disease diagnosis and treatment due to their intrinsic electronic, optical, magnetic, mechanical, and physiological properties. To realize their full potential for nanomedicine, NPs must be biocompatible and targetable toward specific biomolecules to ensure selective sensing, imaging, and drug delivery in complex environments such as living cells, tissues, animals, and human bodies. In this Account, we summarize our efforts to impart specific biocompatibility and biorecognition functionality to NPs by developing strategies to integrate inorganic and organic NPs with functional DNA (fDNA), including aptamers, DNAzymes, and aptazymes to create fDNA-NPs. These hybrid NPs take advantage of fDNA's ability to either bind targets or catalyze reactions in the presence of targets selectively and utilize their unique physicochemical properties including small size, low immunogenicity, and ease of synthesis and chemical modification in comparison with other molecules such as antibodies. By integrating inorganic NPs such as gold NPs, quantum dots, and iron oxide nanoparticles with fDNA, we designed stimuli-responsive fDNA-NPs that exhibit target induced assembly and disassembly of NPs, resulting in a variety of colorimetric, fluorescent, and magnetic resonance imaging (MRI)-based sensors for diagnostic of a broad range of analytes. To impart both biocompatibility and selectivity on inorganic NPs for targeted bioimaging, we have demonstrated DNA-mediated surface functionalization, shape-controlled synthesis, and coordinative assembly of such NPs as specific bioprobes. A highlight is provided on the construction of fDNA-based nanoprobes with light-activatable sensing and imaging functions, which provides precise control of recognition properties of fDNA with high spatiotemporal resolution. To explore the potential of organic NPs for biosensing applications, we have developed an enzyme-responsive fDNA-liposome as a universal sensing platform compatible with diverse biological targets as well as different detection methods including fluorescence, MRI, or temperature, making possible point-of-care diagnostics. To expand the application regime of organic NPs, we collaborated with the Zimmerman group to prepare single-chain block copolymer-based NPs and incorporated it with a variety of functions, including monovalent DNA for assembly, tunable surface chemistry for cellular imaging, and coordinative Cu(II) sites for catalyzing intracellular click reactions, demonstrating the potential of using organic NPs to create promising fDNA-NP systems with programmable functionalities. Furthermore, we survey our recent endeavor in integration of cell-specific aptamers with different NPs for targeted drug delivery, showing that introducing stimuli-responsive properties into NPs that target tumor microenvironments would enable safer and more effective therapy for cancers. Finally, current challenges and future perspectives in fDNA-mediated engineering of NPs for biomedical applications are discussed.
Collapse
Affiliation(s)
- Lele Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hang Xing
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Electrochemical thrombin aptasensor based on using magnetic nanoparticles and porous carbon prepared by carbonization of a zinc(II)-2-methylimidazole metal-organic framework. Mikrochim Acta 2019; 186:659. [PMID: 31471765 DOI: 10.1007/s00604-019-3781-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
A homogeneous electrochemical aptasensor was obtained by modifying a glassy carbon electrode (GCE) with a porous carbon nanomaterial (Z-1000, about 70 nm, deteced by transmission electron microscopic) that was obtained by carbonization of a zinc(II)-2-methylimidazole metal-organic framework. Z-1000 possesses a large specific surface and outstanding electrochemical properties. A thrombin-binding aptamer (CP) was immobilized on the magnetite nanoparticles MNPs by the condensation reaction and further combined with reporter probe (RP) that is functionalized with electroactive methylene blue (MB). In the presence of thrombin, the CP was specifically recognized with it to form the CP/MNP/Thb complex, and the RP was dissociated from MNPs. The released RP was captured by the modified GCE through π-stacking interaction between nucleobases and carbon nanostructure. The electrical signal generated by MB can be monitored by differential pulse voltammetry (DPV). Under the optimized conditions, the DPV peak current at around -0.28 V (vs. SCE) increases with thrombin concentration. The sensor has a detection limit of 0.8 fM of thrombin and a linear range that extends from 10 fM to 100 nM. It was successfully applied to the analysis of spiked serum. The recoveries are 98.1-99.4% and RSDs are 3.9%-4.0%. Conceivably, this aptasensor scheme can be easily extended to other proteins and gives inspiration to manufacture sensitive aptasensor. Graphical abstract A homogeneous electrochemical aptasensor is obtained by modifying a glassy carbon electrode with the MOF-derived porous carbon. The sensor has a detection limit of 0.8 fM and a wide linear range from 10 fM to 100 nM for thrombin detection.
Collapse
|
19
|
Cheng YY, Xie YF, Li CM, Li YF, Huang CZ. Förster Resonance Energy Transfer-Based Soft Nanoballs for Specific and Amplified Detection of MicroRNAs. Anal Chem 2019; 91:11023-11029. [DOI: 10.1021/acs.analchem.9b01281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yun Ying Cheng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yi Fen Xie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chun Mei Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
20
|
Affiliation(s)
- Carola Hofmann
- Universität Regensburg Institut für Analytische Chemie, Chemo- und Biosensorik Universitätsstraße 31 93053 Regensburg Deutschland
| | - Axel Duerkop
- Universität Regensburg Institut für Analytische Chemie, Chemo- und Biosensorik Universitätsstraße 31 93053 Regensburg Deutschland
| | - Antje J. Baeumner
- Universität Regensburg Institut für Analytische Chemie, Chemo- und Biosensorik Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
21
|
Hofmann C, Duerkop A, Baeumner AJ. Nanocontainers for Analytical Applications. Angew Chem Int Ed Engl 2019; 58:12840-12860. [DOI: 10.1002/anie.201811821] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Carola Hofmann
- University of Regensburg Institute of Analytical Chemistry, Chemo- and Biosensors Universitätsstrasse 31 93053 Regensburg Germany
| | - Axel Duerkop
- University of Regensburg Institute of Analytical Chemistry, Chemo- and Biosensors Universitätsstrasse 31 93053 Regensburg Germany
| | - Antje J. Baeumner
- University of Regensburg Institute of Analytical Chemistry, Chemo- and Biosensors Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
22
|
Guo C, Zhang Y, Li Y, Xu S, Wang L. 19F MRI Nanoprobes for the Turn-On Detection of Phospholipase A2 with a Low Background. Anal Chem 2019; 91:8147-8153. [DOI: 10.1021/acs.analchem.9b00435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chang Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yangyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yawei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
23
|
Li X, Yang L, Men C, Xie YF, Liu JJ, Zou HY, Li YF, Zhan L, Huang CZ. Photothermal Soft Nanoballs Developed by Loading Plasmonic Cu 2- xSe Nanocrystals into Liposomes for Photothermal Immunoassay of Aflatoxin B 1. Anal Chem 2019; 91:4444-4450. [PMID: 30811173 DOI: 10.1021/acs.analchem.8b05031] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photothermal effects (PTEs) have been greatly concerned with the fast development of new photothermal nanomaterials. Herein we propose a photothermal immunoassay (PTIA) by taking mycotoxins (AFB1) as an example based on the PTEs of plasmonic Cu2- xSe nanocrystals (NCs). By loading plasmonic Cu2- xSe NCs into liposomes to form photothermal soft nanoballs (ptSNBs), on which aptamer of AFB1 previously assembled, a sandwich structure of AFB1 could be formed with the aptamer on ptSNBs and capture antibody. The heat released from the ptSNBs under NIR irradiation, owing to the plasmonic photothermal light-to-heat conversion through photon-electron-phonon coupling, makes the temperature of substrate solution increased, and the increased temperature has a linear relationship with the AFB1 content. Owing to the large amounts of plasmonic Cu2- xSe NCs in the ptSNBs, the PTEs get amplified, making AFB1 higher than 1 ng/mL detectable in food even if with a rough homemade immunothermometer. The proposal of PTIA opens a new field of immunoassay including developing photothermal nanostructures, new thermometers, PTIA theory, and so on.
Collapse
|
24
|
Wang Y, Jia F, Wang Z, Qian Y, Fan L, Gong H, Luo A, Sun J, Hu Z, Wang W. Boosting the Theranostic Effect of Liposomal Probes toward Prominin-1 through Optimized Dual-Site Targeting. Anal Chem 2019; 91:7245-7253. [DOI: 10.1021/acs.analchem.9b00622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuehua Wang
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Fei Jia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihua Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yixia Qian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linyang Fan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Beijing Institute of Technology, Beijing 100081, China
| | - He Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Aiqin Luo
- Beijing Institute of Technology, Beijing 100081, China
| | - Jian Sun
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Weizhi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
25
|
Zhang J, Lan T, Lu Y. Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo Applications. Adv Healthc Mater 2019; 8:e1801158. [PMID: 30725526 PMCID: PMC6426685 DOI: 10.1002/adhm.201801158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Indexed: 12/25/2022]
Abstract
Recent advances in nanotechnology and engineering have generated many nanomaterials with unique physical and chemical properties. Over the past decade, numerous nanomaterials are introduced into many research areas, such as sensors for environmental monitoring, food safety, point-of-care diagnostics, and as transducers for solar energy transfer. Meanwhile, functional nucleic acids (FNAs), including nucleic acid enzymes, aptamers, and aptazymes, have attracted major attention from the biomedical community due to their unique target recognition and catalytic properties. Benefiting from the recent progress of molecular engineering strategies, the physicochemical properties of nanomaterials are endowed by the target recognition and catalytic activity of FNAs in the presence of a target analyte, resulting in numerous smart nanoprobes for diverse applications including intracellular imaging, drug delivery, in vivo imaging, and tumor therapy. This progress report focuses on the recent advances in designing and engineering FNA-based nanomaterials, highlighting the functional outcomes toward in vivo applications. The challenges and opportunities for the future translation of FNA-based nanomaterials into clinical applications are also discussed.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street Suite 101, Champaign, IL, 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Li Y, Sun L, Zhao Q. Aptamer-Structure Switch Coupled with Horseradish Peroxidase Labeling on a Microplate for the Sensitive Detection of Small Molecules. Anal Chem 2019; 91:2615-2619. [PMID: 30675773 DOI: 10.1021/acs.analchem.8b05606] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detection of small molecules with good sensitivity, high throughput, simplicity, and generality using aptamers is desired but still remains challenging. We described an aptamer-structure-switch assay coupled with horseradish peroxidase (HRP) labeling on microplates for sensitive absorbance and chemiluminescence detection of small molecules. This assay relies on competition for affinity binding to a limited HRP-labeled aptamer between small-molecule targets and immobilized short DNA strands complementary to the aptamer (cDNA) on a microplate. In the absence of targets, the HRP-labeled aptamer hybridizes with the cDNA on the microplate, and HRP catalyzes substrate into product, generating absorbance or chemiluminescence signals. The binding of small-molecule targets to aptamers causes displacement of HRP-labeled aptamers from the cDNA and signal decrease. In chemiluminescence-analysis mode, the assay achieved detection of aflatoxin B1 (AFB1), ochratoxin A (OTA), and adenosine triphosphate (ATP) with detection limits of 10 pM, 20 pM, and 20 nM, respectively. This assay does not require enzyme-labeled small molecules or the conjugation of small molecules on solid phase. HRP, as an enzyme label, here allows for easily obtainable and highly active signal amplification. This microplate assay is rapid and promising for high-throughput analysis. It shows potential for wide applications in the detection of small molecules.
Collapse
Affiliation(s)
- Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Linlin Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
27
|
Wen Z, Liu F, Chen Q, Xu Y, Li H, Sun S. Recent development in biodegradable nanovehicle delivery system-assisted immunotherapy. Biomater Sci 2019; 7:4414-4443. [DOI: 10.1039/c9bm00961b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A schematic illustration of BNDS biodegradation and release antigen delivery for assisting immunotherapy.
Collapse
Affiliation(s)
- Zhenfu Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Ganjingzi District
- P. R. China
| | | | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| |
Collapse
|
28
|
Cui H, Bo B, Ma J, Tang Y, Zhao J, Xiao H. A target-responsive liposome activated by catalytic hairpin assembly enables highly sensitive detection of tuberculosis-related cytokine. Chem Commun (Camb) 2018; 54:4870-4873. [PMID: 29697111 DOI: 10.1039/c8cc01542b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Here, we propose a new fluorescence method to detect tuberculosis-related cytokine by using a target-responsive liposome activated by catalytic hairpin assembly. The method combines a DNA self-assembly based amplification process with a liposome-based signal amplification process, therefore offering a very high sensitivity.
Collapse
Affiliation(s)
- Haiyan Cui
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | | | | | | | | | | |
Collapse
|
29
|
Wang G, Li Z, Ma N. Next-Generation DNA-Functionalized Quantum Dots as Biological Sensors. ACS Chem Biol 2018; 13:1705-1713. [PMID: 29257662 DOI: 10.1021/acschembio.7b00887] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA-functionalized quantum dots (DNA-QDs) have found considerable application in biosensing and bioimaging. Different from the first generation (I-G) DNA-QDs prepared via conventional bioconjugation chemistry, the second generation (II-G) DNA-QDs prepared via one-step DNA-templated QD synthesis features a defined number of DNA valencies (usually monovalency), which is preferable for controlled assembly and biological targeting. In this review, we summarize recent progress in designing QD probes based on II-G DNA-QDs for advanced sensing and imaging applications. It opens up new avenues for highly sensitive and intelligent sensing of a range of disease-relevant biomolecules in vitro and in living cells.
Collapse
Affiliation(s)
- Ganglin Wang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Zhi Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Nan Ma
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
30
|
Abraham T, Mao M, Tan C. Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Phys Biol 2018; 15:061001. [DOI: 10.1088/1478-3975/aac7a2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Nkanga CI, Krause RWM. Conjugation of isoniazid to a zinc phthalocyanine via hydrazone linkage for pH-dependent liposomal controlled release. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0776-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3:7. [PMID: 29560283 PMCID: PMC5854578 DOI: 10.1038/s41392-017-0004-3] [Citation(s) in RCA: 1188] [Impact Index Per Article: 169.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Although conventional chemotherapy has been successful to some extent, the main drawbacks of chemotherapy are its poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, development of multiple drug resistance, and non-specific targeting. The main aim in the development of drug delivery vehicles is to successfully address these delivery-related problems and carry drugs to the desired sites of therapeutic action while reducing adverse side effects. In this review, we will discuss the different types of materials used as delivery vehicles for chemotherapeutic agents and their structural characteristics that improve the therapeutic efficacy of their drugs and will describe recent scientific advances in the area of chemotherapy, emphasizing challenges in cancer treatments. Improving the delivery of cancer therapies to tumor sites is crucial to reduce unwanted side effects and patient mortality rates. Pralay Maiti and colleagues at the Indian Institute of Technology in Varanasi, India, review the latest developments in drug delivery vehicles and treatment approaches designed to enhance the effectiveness of current cancer therapies. New nanoparticle-based carriers, hydrogels and hybrid materials that offer controlled and sustained drug release are showing great promise in animal models. Furthermore, materials that respond to stimuli such as heat, light, magnetic or electric fields are also being tested to aid target-specific drug delivery and, thus, avoid damage to healthy tissues. Although there are some challenges in translating these findings to the clinic, there is no doubt that technological advances are shaping better and safer treatment options.
Collapse
Affiliation(s)
- Sudipta Senapati
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Arun Kumar Mahanta
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sunil Kumar
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
33
|
Zhang J, Xing H, Lu Y. Translating molecular detections into a simple temperature test using a target-responsive smart thermometer. Chem Sci 2018; 9:3906-3910. [PMID: 29780521 PMCID: PMC5935027 DOI: 10.1039/c7sc05325h] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
While it has been well recognized that affordable and pocket-size devices play a major role in environmental monitoring, food safety and medical diagnostics, it often takes a tremendous amount of resources to develop such devices. Devices that have been developed are often dedicated devices that can detect only one or a few targets. To overcome these limitations, we herein report a novel target-responsive smart thermometer for translating molecular detection into a temperature test. The sensor system consists of a functional DNA-phospholipase A2 (PLA2) enzyme conjugate, a liposome-encapsulated NIR dye, and a thermometer interfaced with a NIR-laser device. The sensing principle is based on the target-induced release of PLA2 from the DNA-enzyme conjugate, which catalyzes the hydrolysis of liposome to release the NIR dye inside the liposome. Upon NIR-laser irradiation, the released dye can convert excitation energy into heat, producing a temperature increase in solution, which is detectable using a thermometer. Considering the low cost and facile incorporation of the system with suitable functional DNAs to recognize many targets, the system demonstrated here makes the thermometer an affordable and pocket-size meter for the detection and quantification of a wide range of targets.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL 61801 , USA .
| | - Hang Xing
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL 61801 , USA .
| | - Yi Lu
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL 61801 , USA .
| |
Collapse
|
34
|
Yang L, Deng W, Cheng C, Tan Y, Xie Q, Yao S. Fluorescent Immunoassay for the Detection of Pathogenic Bacteria at the Single-Cell Level Using Carbon Dots-Encapsulated Breakable Organosilica Nanocapsule as Labels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3441-3448. [PMID: 29299908 DOI: 10.1021/acsami.7b18714] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Herein, carbon dots (CDs)-encapsulated breakable organosilica nanocapsules (BONs) were facilely prepared and used as advanced fluorescent labels for ultrasensitive detection of Staphylococcus aureus. The CDs were entrapped in organosilica shells by cohydrolyzation of tetraethyl orthosilicate and bis[3-(triethoxysilyl)propyl]disulfide to form core-shell CDs@BONs, where hundreds of CDs were encapsulated in each nanocapsule. Immunofluorescent nanocapsules, i.e., anti-S. aureus antibody-conjugated CDs@BONs, were prepared to specifically recognize S. aureus. Before fluorescent detection, CDs were released from the BONs by simple NaBH4 reduction. The fluorescent signals were amplified by 2 orders of magnitude because of hundreds of CDs encapsulated in each nanocapsule, compared with a conventional immunoassay using CDs as fluorescent labels. A linear range was obtained at the S. aureus concentration from 1 to 200 CFU mL-1. CDs@BONs are also expected to expand to other systems and allow the detection of ultralow concentrations of targets.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Chang Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| |
Collapse
|
35
|
Mumtaz Virk M, Reimhult E. Phospholipase A 2-Induced Degradation and Release from Lipid-Containing Polymersomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:395-405. [PMID: 29231739 DOI: 10.1021/acs.langmuir.7b03893] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hybrid vesicles, comprising blends of amphiphilic block copolymers and phospholipids, have attracted significant attention recently because of their unique combination of chemical and physical properties. We report a method to make unilamellar hybrid vesicles with diameters of 100 nm by mixing polybutadiene-block-poly(ethylene oxide) and phosphocholine lipids using a combination of solvent inversion and sonication. We show that homogeneous hybrid vesicles are formed when one component is a minor fraction. At compositions with balanced mass fractions, separate populations of similarly sized pure liposomes and hybrid vesicles are indicated. We investigate the release kinetics of calcein encapsulated in the lumen as hybrid large and giant unilamellar vesicles (LUVs and GUVs) of different compositions are exposed to phospholipase A2 (PLA2). PLA2 hydrolyzes lipids, which leads to dissolution of lipid domains and provides a trigger for the release of calcein as pores are formed. We demonstrate that depending on the polymer mole fraction, block copolymers can either protect or boost the rate of lipid degradation and thereby the release rate from nanoscale hybrid vesicles. Strong indications of lipid phase separation into nanoscale domains in LUVs are observed. Most importantly, hybrid GUV with lipids in the fluid phase release calcein slowly as lipids in the liquid-disordered phase do not phase-separate, but they show the fastest release of all blends as LUVs. This indicates phase separation on the nanoscale in contrast to on the microscale, but it also indicates retained high mobility of lipids between the nanoscale domains, which is absent for lipids in the gel phase. Our results demonstrate several ways in which nanoscale hybrid vesicles can and should be optimized for PLA2-triggered release of water-soluble compounds.
Collapse
Affiliation(s)
- Mudassar Mumtaz Virk
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna , Muthgasse 11, 1190 Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna , Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
36
|
Li X, Kan X. A ratiometric strategy -based electrochemical sensing interface for the sensitive and reliable detection of imidacloprid. Analyst 2018; 143:2150-2156. [DOI: 10.1039/c8an00111a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A ratiometric electrochemical sensor was developed for selective and sensitive detection of imidacloprid. Modified poly(thionine) provided a built-in correction to endow the sensor with good accuracy and stability.
Collapse
Affiliation(s)
- Xueyan Li
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P.R. China
| | - Xianwen Kan
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P.R. China
| |
Collapse
|
37
|
Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, Choi HG, Yong CS, Kim JO. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch Pharm Res 2017; 41:111-129. [PMID: 29214601 DOI: 10.1007/s12272-017-0995-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023]
|
38
|
Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1450. [PMID: 28198148 PMCID: PMC5557698 DOI: 10.1002/wnan.1450] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022]
Abstract
The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing them at a specific site of action. In the case of antitumor therapy, association of the therapeutic agent with a carrier system can minimize damage to healthy, nontarget tissues, while limit systemic release and promoting long circulation to enhance uptake at the cancerous site due to the enhanced permeation and retention effect (EPR). Stimuli-responsive systems have become a promising way to deliver and release payloads in a site-selective manner. Potential carrier systems have been derived from a wide variety of materials, including inorganic nanoparticles, lipids, and polymers that have been imbued with stimuli-sensitive properties to accomplish triggered release based on an environmental cue. The unique features in the tumor microenvironment can serve as an endogenous stimulus (pH, redox potential, or unique enzymatic activity) or the locus of an applied external stimulus (heat or light) to trigger the controlled release of API. In liposomal carrier systems triggered release is generally based on the principle of membrane destabilization from local defects within bilayer membranes to effect release of liposome-entrapped drugs. This review focuses on the literature appearing between November 2008-February 2016 that reports new developments in stimuli-sensitive liposomal drug delivery strategies using pH change, enzyme transformation, redox reactions, and photochemical mechanisms of activation. WIREs Nanomed Nanobiotechnol 2017, 9:e1450. doi: 10.1002/wnan.1450 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Y Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - D H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
39
|
Chen K, Liu B, Yu B, Zhong W, Lu Y, Zhang J, Liao J, Liu J, Pu Y, Qiu L, Zhang L, Liu H, Tan W. Advances in the development of aptamer drug conjugates for targeted drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1438. [PMID: 27800663 PMCID: PMC5507701 DOI: 10.1002/wnan.1438] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
A key goal of modern medicine is target-specific therapeutic intervention. However, most drugs lack selectivity, resulting in 'off-target' side effects. To address the requirements of 'targeted therapy,' aptamers, which are artificial oligonucleotides, have been used as novel targeting ligands to construct aptamer drug conjugates (ApDC) that can specifically bind to a broad spectrum of targets, including diseased cells. Accordingly, the application of aptamers in targeted drug delivery has attracted broad interest due to their impressive selectivity and affinity, low immunogenicity, easy synthesis with high reproducibility, facile modification, and relatively rapid tissue penetration with no toxicity. Functionally, aptamers themselves can be used as macromolecular drugs, and they are also commonly used in biomarker discovery and targeted drug delivery. In this review, we will highlight the most recent advances in the development of aptamers and aptamer conjugates, and discuss their potential in targeted therapy. WIREs Nanomed Nanobiotechnol 2017, 9:e1438. doi: 10.1002/wnan.1438 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ke Chen
- Xiangya Hospital, Central South University, Changsha, China
| | - Bo Liu
- Xiangya Hospital, Central South University, Changsha, China
| | - Bo Yu
- Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zhong
- Xiangya Hospital, Central South University, Changsha, China
| | - Yi Lu
- Xiangya Hospital, Central South University, Changsha, China
| | - Jiani Zhang
- Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liao
- Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Xiangya Hospital, Central South University, Changsha, China
- Molecular Science and Biomedicine Laboratory, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, Hunan University, Changsha, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Ying Pu
- Xiangya Hospital, Central South University, Changsha, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, Hunan University, Changsha, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Liqin Zhang
- Molecular Science and Biomedicine Laboratory, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, Hunan University, Changsha, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Huixia Liu
- Xiangya Hospital, Central South University, Changsha, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, Hunan University, Changsha, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
40
|
Jiang Q, Zhang D, Cao Y, Gan N. An antibody-free and signal-on type electrochemiluminescence sensor for diethylstilbestrol detection based on magnetic molecularly imprinted polymers-quantum dots labeled aptamer conjugated probes. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Abstract
Magnetic resonance imaging (MRI) is a non-invasive imaging technique with widespread use in diagnosis. Frequently, contrast in MRI is enhanced with the aid of a contrast agent, among which smart, responsive, OFF/ON or activatable probes are of particular interest. These kinds of probes elicit a response to selective stimuli, evidencing the presence of enzymes or acidic pH, for instance. In this review, we will focus on smart probes that are detectable by both 1H and 19F MRI, frequently based on nanomaterials. We will discuss the triggering factors and the strategies employed thus far to activate each probe.
Collapse
Affiliation(s)
- Monica Carril
- CIC biomaGUNE, Paseo Miramón 182, 20014 Donostia, San Sebastian, Spain
| |
Collapse
|
42
|
Liu M, Du H, Zhang W, Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1267-1280. [DOI: 10.1016/j.msec.2016.11.030] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
|
43
|
Chen JL, Li L, Wang S, Sun XY, Xiao L, Ren JS, Di B, Gu N. A glucose-activatable trimodal glucometer self-assembled from glucose oxidase and MnO2nanosheets for diabetes monitoring. J Mater Chem B 2017; 5:5336-5344. [DOI: 10.1039/c7tb00864c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For the first time a glucose-activatable trimodal glucometer with an exceptional enhanced enzymatic activity, self-assembled from glucose oxidase and MnO2nanosheets for diabetes monitoringin vitro, has been presented.
Collapse
Affiliation(s)
- Jin-Long Chen
- Department of Pharmaceutical Analysis
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Li Li
- Department of Pharmaceutical Analysis
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Shuo Wang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Xiao-Yan Sun
- Laboratory of Cellular and Molecular Biology
- Jiangsu Province Institute of Chinese Medicine
- Nanjing 210000
- P. R. China
| | - Lu Xiao
- Department of Pharmaceutical Analysis
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Jia-Shu Ren
- Department of Pharmaceutical Analysis
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Bin Di
- Department of Pharmaceutical Analysis
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| |
Collapse
|
44
|
Li X, Song J, Xue Q, Zhao H, Liu M, Chen B, Liu Y, Jiang W, Li CZ. Sensitive and selective detection of the p53 gene based on a triple-helix magnetic probe coupled to a fluorescent liposome hybridization assembly via rolling circle amplification. Analyst 2017; 142:3598-3604. [DOI: 10.1039/c7an01255a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Developing a sensitive and selective sensing platform for the p53 gene and its mutation analysis is essential and may aid in early cancer screening and assessment of prognosis.
Collapse
Affiliation(s)
- Xia Li
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
| | - Juan Song
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
| | - Qingwang Xue
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
| | - Haiyan Zhao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P.R. China
| | - Min Liu
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
| | - Baoli Chen
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
| | - Yun Liu
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P.R. China
| | - Chen-zhong Li
- Department of Chemistry
- Liaocheng University
- Liaocheng 252059
- China
- Nanobioengineering/Bioelectronics Laboratory
| |
Collapse
|
45
|
Xing H, Hwang K, Lu Y. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications. Theranostics 2016; 6:1336-52. [PMID: 27375783 PMCID: PMC4924503 DOI: 10.7150/thno.15464] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/15/2016] [Indexed: 12/12/2022] Open
Abstract
Liposomes are nanocarriers comprised of lipid bilayers encapsulating an aqueous core. The ability of liposomes to encapsulate a wide variety of diagnostic and therapeutic agents has led to significant interest in utilizing liposomes as nanocarriers for theranostic applications. In this review, we highlight recent progress in developing liposomes as nanocarriers for a) diagnostic applications to detect proteins, DNA, and small molecule targets using fluorescence, magnetic resonance, ultrasound, and nuclear imaging; b) therapeutic applications based on small molecule-based therapy, gene therapy and immunotherapy; and c) theranostic applications for simultaneous detection and treatment of heavy metal toxicity and cancers. In addition, we summarize recent studies towards understanding of interactions between liposomes and biological components. Finally, perspectives on future directions in advancing the field for clinical translations are also discussed.
Collapse
Affiliation(s)
- Hang Xing
- 1. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 61801
- 2. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Kevin Hwang
- 1. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Yi Lu
- 1. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 61801
- 2. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 61801
| |
Collapse
|