1
|
Mo Y, Keszei AFA, Kothari S, Liu H, Pan A, Kim P, Bu J, Kamanzi A, Dai DL, Mazhab-Jafari MT, Chen J, Leslie S, Zheng G. Lipid-siRNA Organization Modulates the Intracellular Dynamics of Lipid Nanoparticles. J Am Chem Soc 2025; 147:10430-10445. [PMID: 40068204 PMCID: PMC11951082 DOI: 10.1021/jacs.4c18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Lipid nanoparticles (LNPs) are widely used for delivering therapeutic nucleic acids, yet the relationship between their internal structure and intracellular behavior, particularly before RNA release, remains unclear. Here, we elucidate how lipid-siRNA organization within LNPs can modulate their intracellular delivery dynamics. We use cryo-electron microscopy and photochemical assays to reveal that increased siRNA loading can reduce helper lipids' distribution to the LNP surface, while siRNA consistently localizes near the surface. These alterations in lipid-siRNA organization affect LNP membrane fluidity, enhancing LNP fusion with cellular membranes and promoting cytosolic siRNA delivery, primarily via macropinocytosis. Using photosensitive lipids and live cell imaging, we demonstrate that lipid-siRNA organization regulates LNP responsiveness to external stimuli, significantly affecting siRNA endosomal escape efficiency upon light activation. We further confirm this observation using convex lens-induced confinement microscopy and single-particle imaging. Overall, our findings provide critical insights into how lipid-siRNA organization shapes LNP intracellular dynamics, offering rational design principles for optimizing LNP-based RNA therapeutics.
Collapse
Affiliation(s)
- Yulin Mo
- Institute
of Medical Science, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Alexander F. A. Keszei
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Shagun Kothari
- Michael
Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Heyi Liu
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Anni Pan
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Paige Kim
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Jiachuan Bu
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Albert Kamanzi
- Michael
Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David L. Dai
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Mohammad T. Mazhab-Jafari
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Juan Chen
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Sabrina Leslie
- Michael
Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gang Zheng
- Institute
of Medical Science, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
2
|
Kamanzi A, Zhang Y, Gu Y, Liu F, Berti R, Wang B, Saadati F, Ciufolini MA, Kulkarni J, Cullis P, Leslie S. Quantitative Visualization of Lipid Nanoparticle Fusion as a Function of Formulation and Process Parameters. ACS NANO 2024; 18:18191-18201. [PMID: 38968430 DOI: 10.1021/acsnano.3c12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Lipid nanoparticles (LNPs) have proven to be promising delivery vehicles for RNA-based vaccines and therapeutics, particularly in LNP formulations containing ionizable cationic lipids that undergo protonation/deprotonation in response to buffer pH changes. These nanoparticles are typically formulated using a rapid mixing technique at low pH, followed by a return to physiological pH that triggers LNP-LNP fusion. A detailed understanding of these dynamic processes is crucial to optimize the overall performance and efficiency of LNPs. However, knowledge gaps persist regarding how particle formation mechanisms impact drug loading and delivery functions. In this work, we employ single-molecule Convex Lens-induced Confinement (CLiC) microscopy in combination with Förster resonance energy transfer (FRET) measurements to study LNP fusion dynamics in relation to various formulation parameters, including lipid concentration, buffer conditions, drug loading ratio, PEG-lipid concentrations, and ionizable lipid selection. Our results reveal a strong correlation between the measured fusion dynamics and the formulation parameters used; these findings are consistent with DLS and Cryo-TEM-based assays. These measurements offer a cost-effective method for characterizing and screening potential drug candidates and can provide additional insights into their design, with opportunities for optimization.
Collapse
Affiliation(s)
- Albert Kamanzi
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yao Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Yifei Gu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Faith Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Romain Berti
- ScopeSys, Inc., 2366 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Benjamin Wang
- ScopeSys, Inc., 2366 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Fariba Saadati
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Marco A Ciufolini
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jayesh Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- NanoVation Therapeutics, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Pieter Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Sabrina Leslie
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
3
|
Zhao B, Kamanzi A, Zhang Y, Chan KYT, Robertson M, Leslie S, Cullis PR. Determination of the interior pH of lipid nanoparticles using a pH-sensitive fluorescent dye-based DNA probe. Biosens Bioelectron 2024; 251:116065. [PMID: 38330772 DOI: 10.1016/j.bios.2024.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Lipid nanoparticles (LNPs) containing ionizable cationic lipids are proven delivery systems for therapeutic nucleic acids, such as small interfering RNA (siRNA). It is important to understand the relationship between the interior pH of LNPs and the pH of the external environment to understand LNP formulation and function. Here, we developed a simple and rapid approach for determining the pH of the LNP core using a pH-sensitive fluorescent dye-based DNA probe. LNP siRNA systems containing pH-responsive DNA probes (LNP-siRNA&DNA) were generated by rapid mixing of lipids in ethanol and pH 4 aqueous buffer containing siRNA and DNA probes. We demonstrated that DNA probes were readily encapsulated in LNP systems and were sequestered into an environment at a high concentration as evidenced by an inter-probe FRET signal. It was shown that the pH of LNP encapsulated probes closely follows the pH increase or decrease of the external environment. This indicates that the clinically approved LNP RNA systems with similar lipid compositions (e.g., Onpattro and Comirnaty) are highly permeable to protons and that the pH of the interior environment closely mirrors the external environment. The pH-dependent response of the probe in LNPs was also confirmed under buffer conditions at various pHs. Furthermore, we showed that the pH-sensitive DNA probe can be incorporated into LNP systems at levels that allow the pH response to be monitored at a single LNP level using convex lens-induced confinement (CLiC) confocal microscopy. Direct visualization of the internal pH of single particles with the fluorescent DNA probe was achieved by CLiC for LNP-siRNA&DNA systems formulated under both high and normal ionic strength conditions.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Albert Kamanzi
- Michael Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Yao Zhang
- Michael Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Karen Y T Chan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Madelaine Robertson
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sabrina Leslie
- Michael Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
4
|
Svirelis J, Adali Z, Emilsson G, Medin J, Andersson J, Vattikunta R, Hulander M, Järlebark J, Kolman K, Olsson O, Sakiyama Y, Lim RYH, Dahlin A. Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates. Nat Commun 2023; 14:5131. [PMID: 37612271 PMCID: PMC10447545 DOI: 10.1038/s41467-023-40889-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
The possibility to detect and analyze single or few biological molecules is very important for understanding interactions and reaction mechanisms. Ideally, the molecules should be confined to a nanoscale volume so that the observation time by optical methods can be extended. However, it has proven difficult to develop reliable, non-invasive trapping techniques for biomolecules under physiological conditions. Here we present a platform for long-term tether-free (solution phase) trapping of proteins without exposing them to any field gradient forces. We show that a responsive polymer brush can make solid state nanopores switch between a fully open and a fully closed state with respect to proteins, while always allowing the passage of solvent, ions and small molecules. This makes it possible to trap a very high number of proteins (500-1000) inside nanoscale chambers as small as one attoliter, reaching concentrations up to 60 gL-1. Our method is fully compatible with parallelization by imaging arrays of nanochambers. Additionally, we show that enzymatic cascade reactions can be performed with multiple native enzymes under full nanoscale confinement and steady supply of reactants. This platform will greatly extend the possibilities to optically analyze interactions involving multiple proteins, such as the dynamics of oligomerization events.
Collapse
Affiliation(s)
- Justas Svirelis
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Zeynep Adali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Gustav Emilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Jesper Medin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - John Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Radhika Vattikunta
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Mats Hulander
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Julia Järlebark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Krzysztof Kolman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Oliver Olsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Yusuke Sakiyama
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056, Basel, Switzerland
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| |
Collapse
|
5
|
Leslie SR. Biophysical Reviews ‘Meet the Editors Series’ — a profile of Sabrina Leslie. Biophys Rev 2022; 14:417-421. [PMID: 35437452 PMCID: PMC9007050 DOI: 10.1007/s12551-022-00948-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 01/22/2023] Open
Abstract
It is my pleasure to introduce myself to the readers of Biophysical Reviews as part of the ‘Meet the Editors Series’.
Collapse
Affiliation(s)
- Sabrina R. Leslie
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
6
|
Kamanzi A, Gu Y, Tahvildari R, Friedenberger Z, Zhu X, Berti R, Kurylowicz M, Witzigmann D, Kulkarni JA, Leung J, Andersson J, Dahlin A, Höök F, Sutton M, Cullis PR, Leslie S. Simultaneous, Single-Particle Measurements of Size and Loading Give Insights into the Structure of Drug-Delivery Nanoparticles. ACS NANO 2021; 15:19244-19255. [PMID: 34843205 DOI: 10.1021/acsnano.1c04862] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticles are a promising solution for delivery of a wide range of medicines and vaccines. Optimizing their design depends on being able to resolve, understand, and predict biophysical and therapeutic properties, as a function of design parameters. While existing tools have made great progress, gaps in understanding remain because of the inability to make detailed measurements of multiple correlated properties. Typically, an average measurement is made across a heterogeneous population, obscuring potentially important information. In this work, we develop and apply a method for characterizing nanoparticles with single-particle resolution. We use convex lens-induced confinement (CLiC) microscopy to isolate and quantify the diffusive trajectories and fluorescent intensities of individual nanoparticles trapped in microwells for long times. First, we benchmark detailed measurements of fluorescent polystyrene nanoparticles against prior data to validate our approach. Second, we apply our method to investigate the size and loading properties of lipid nanoparticle (LNP) vehicles containing silencing RNA (siRNA), as a function of lipid formulation, solution pH, and drug-loading. By taking a comprehensive look at the correlation between the intensity and size measurements, we gain insights into LNP structure and how the siRNA is distributed in the LNP. Beyond introducing an analytic for size and loading, this work allows for future studies of dynamics with single-particle resolution, such as LNP fusion and drug-release kinetics. The prime contribution of this work is to better understand the connections between microscopic and macroscopic properties of drug-delivery vehicles, enabling and accelerating their discovery and development.
Collapse
Affiliation(s)
- Albert Kamanzi
- Department of Physics, McGill University, 3600 University, Montreal Quebec, Canada H3A2T8
- Department of Physics Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada V6T 1Z1
- Michael Smith Laboratories and Department of Physics, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Yifei Gu
- Department of Physics, McGill University, 3600 University, Montreal Quebec, Canada H3A2T8
| | - Radin Tahvildari
- Department of Physics, McGill University, 3600 University, Montreal Quebec, Canada H3A2T8
| | - Zachary Friedenberger
- Department of Physics, McGill University, 3600 University, Montreal Quebec, Canada H3A2T8
| | - Xingqi Zhu
- Department of Physics, McGill University, 3600 University, Montreal Quebec, Canada H3A2T8
| | - Romain Berti
- Department of Physics, McGill University, 3600 University, Montreal Quebec, Canada H3A2T8
- Michael Smith Laboratories and Department of Physics, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, Canada V6T 1Z4
- ScopeSys Inc., 33 Rue Prince, Montreal, Quebec, Canada H3C 2M7
| | - Marty Kurylowicz
- Department of Physics, McGill University, 3600 University, Montreal Quebec, Canada H3A2T8
- ScopeSys Inc., 33 Rue Prince, Montreal, Quebec, Canada H3C 2M7
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - John Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mark Sutton
- Department of Physics, McGill University, 3600 University, Montreal Quebec, Canada H3A2T8
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sabrina Leslie
- Department of Physics, McGill University, 3600 University, Montreal Quebec, Canada H3A2T8
- Department of Physics Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada V6T 1Z1
- Michael Smith Laboratories and Department of Physics, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
7
|
Gao J, Su H, Wang W. A microwell array-based approach for studying single nanoparticle catalysis with high turnover frequency. J Chem Phys 2021; 155:071101. [PMID: 34418929 DOI: 10.1063/5.0058402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Measuring the catalytical activities of single catalysts in the case of high turnover frequency (TOF, realistic conditions) is highly desirable to accurately evaluate the functional heterogeneities among individuals and to understand the catalytic mechanism. Herein, we report a microwell array-based method to in operando measure the photocatalytic kinetics of single CdS nanoparticles (NPs) with high TOF. This was realized by sealing individual CdS NPs into separated micrometer-sized polydimethylsiloxane wells, thus eliminating the diffusion of products among individuals in the case of high concentration of reactants. This method allowed us to monitor the activities of single catalysts with an average TOF up to 2.1 × 105 s-1. Interestingly, two types of catalytical behaviors were revealed during single CdS photocatalysis: a rapid decline in activity for most CdS NPs and an initial increase in activity followed by a decrease for a minor population of individuals. The developed method will facilitate the investigation of catalytic activities of single particles under realistic conditions and hold great potential in the fields of photo/electro-catalysts, enzymes, functional bacteria, and so on.
Collapse
Affiliation(s)
- Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Xie W, He S, Fang S, Liang L, Shi B, Wang D. Visualizing of AuNPs protection aptamer from DNase I enzyme digestion based on Nanopipette and its use for Microcystin-LR detection. Anal Chim Acta 2021; 1173:338698. [PMID: 34172149 DOI: 10.1016/j.aca.2021.338698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 11/20/2022]
Abstract
A simple and effective fluorescence platform has been established for visualizing nanomaterials' protective effect of DNA from cellular enzyme digestion based on nanopipette. In a proof-of-concept trial, gold nanoparticles (AuNPs) protect aptamer was designed, and it used for Microcystin-LR (MC-LR) sensitive detection. In the absence of MC-LR, FAM-labeled aptamers were combined on AuNPs, resulting in weak fluorescence emission. In the presence of MC-LR, aptamer bound with MC-LR. The formed complex leaves the surface of AuNPs. With the addition of the deoxyribonuclease I (DNase I) enzyme, the aptamer was selectively cleavaged, and MC-LR was released as an additional target molecule to achieve signal amplification and obtain strong fluorescence intensity. At the optimized conditions, a wide linear range (0.25 nM-20 nM) of fluorescence response for MC-LR was obtained. Further, by electrochemically manipulation MC-LR and DNase I inside confining nanopipette, which is filled with aptamer/AuNPs. The fluorescence intensity change with the aptamer and AuNPs interaction, these results directly visualize the process of DNA cleavage, and the interaction with AuNPs can effectively prevent the cleavage at the nanoscale confinement. This convenient nanoscale device provides new kinetic information about the dynamic chemical processes at a single-molecule level.
Collapse
Affiliation(s)
- Wanyi Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shixuan He
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Physics Department, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Shaoxi Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Biao Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
9
|
Leslie S, Berard D, Kamanzi A, Metera K, Scott S, Shaheen C, Shayegan M, Tahvildari R, Zhang Z. Single-molecule imaging of the biophysics of molecular interactions with precision and control, in cell-like conditions, and without tethers. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Shayegan M, Tahvildari R, Metera K, Kisley L, Michnick SW, Leslie SR. Probing Inhomogeneous Diffusion in the Microenvironments of Phase-Separated Polymers under Confinement. J Am Chem Soc 2019; 141:7751-7757. [DOI: 10.1021/jacs.8b13349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marjan Shayegan
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Radin Tahvildari
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Kimberly Metera
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Stephen W. Michnick
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Sabrina R. Leslie
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|
11
|
Öz R, Kk S, Westerlund F. A nanofluidic device for real-time visualization of DNA-protein interactions on the single DNA molecule level. NANOSCALE 2019; 11:2071-2078. [PMID: 30644945 DOI: 10.1039/c8nr09023h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single DNA molecule techniques have revolutionized our understanding of DNA-protein interactions. Traditional techniques for such studies have the major drawback that the DNA molecule studied is attached to a bead or a surface. Stretching of DNA molecules in nanofluidic channels has enabled single-molecule studies of DNA-protein interactions without the need of tethering the molecule to a foreign entity. This in turn allows for studying reactions along the whole extension of the molecule, including the free DNA ends. However, existing studies either rely on measurements where all components are mixed before introduction into the nanochannels or where passive diffusion brings the reagents to the confined DNA molecule. We here present a new generation of nanofluidic devices, where active exchange of the local environment within the nanofluidic channel is possible, while keeping the DNA molecule stretched and in confinement. To demonstrate the functionality of this novel device we added different analytes, such as SDS, spermidine and DNase I, to YOYO-1 stained DNA and studied the response in real time. We also performed a FRET-based reaction, where two different analytes were added sequentially to the same DNA molecule. We believe that this design will enable in situ mapping of complex biochemical processes, involving multiple proteins and cofactors, on single DNA molecules as well as other biomacromolecules.
Collapse
Affiliation(s)
- Robin Öz
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | | | | |
Collapse
|
12
|
Dangi S, Riehn R. Nanoplumbing with 2D Metamaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803478. [PMID: 30537130 PMCID: PMC6785347 DOI: 10.1002/smll.201803478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Complex manipulations of DNA in a nanofluidic device require channels with branches and junctions. However, the dynamic response of DNA in such nanofluidic networks is relatively unexplored. Here, the transport of DNA in a 2D metamaterial made by arrays of nanochannel junctions is investigated. The mechanism of transport is explained as Brownian motion through an energy landscape formed by the combination of the confinement free energy of DNA and the effective potential of hydrodynamic flow, which both can be tuned independently within the device. For the quantitative understanding of DNA transport, a dynamic mean-field model of DNA at a nanochannel junction is proposed. It is shown that the dynamics of DNA in a nanofluidic device with branched channels and junctions is well described by the model.
Collapse
|
13
|
Berard DJ, Leslie SR. Miniaturized flow cell with pneumatically-actuated vertical nanoconfinement for single-molecule imaging and manipulation. BIOMICROFLUIDICS 2018; 12:054107. [PMID: 30344834 PMCID: PMC6167230 DOI: 10.1063/1.5052005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 05/06/2023]
Abstract
Convex Lens-induced Confinement (CLiC) is a single-molecule imaging technique that uses a deformable glass flow cell to gently trap, manipulate, and visualize single molecules within micro- and nano-structures, to enable a wide range of applications. Here, we miniaturize the CLiC flow cell, from 25 × 25 to 3 × 3 mm 2 and introduce pneumatic control of the confinement. Miniaturization of the flow cell improves fabrication throughput by almost two orders of magnitude and, advantageous for pharmaceutical and diagnostic applications where samples are precious, significantly lowers the internal volume from microliters to nanoliters. Pneumatic control of the device reduces the confinement gradient and improves mechanical stability while maintaining low autofluorescence and refractive index-matching with oil-immersion objectives. To demonstrate our "mini CLiC" system, we confine and image DNA in sub-50 nm nanogrooves, with high DNA extension consistent with the Odijk confinement regime.
Collapse
Affiliation(s)
- Daniel J Berard
- Department of Physics, McGill University, Montreal H3A 2T8, Canada
| | - Sabrina R Leslie
- Department of Physics, McGill University, Montreal H3A 2T8, Canada
| |
Collapse
|
14
|
Dai L, Jones JJ, Klotz AR, Levy S, Doyle PS. Nanoconfinement greatly speeds up the nucleation and the annealing in single-DNA collapse. SOFT MATTER 2017; 13:6363-6371. [PMID: 28868564 DOI: 10.1039/c7sm01249g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Manipulating and measuring single-molecule dynamics and reactions in nanofluidics is a rapidly growing field with broad applications in developing new biotechnologies, understanding nanoconfinement effects in vivo, and exploring new phenomena in confinement. In this work, we investigate the kinetics of DNA collapse in nanoslits using single T4-DNA (165.6 kbp) and λ-DNA (48.5 kbp), with particular focus on the measurement of the nucleation and annealing times. Fixing the ethanol concentration at 35% and varying the slit height from 2000 to 31 nm, the nucleation time dramatically decreases from more than 1 hour to a few minutes or less. The increased collapsed rate results from the larger free energy experienced by coiled DNA in confinement relative to compacted DNA. Our results also shed light on other conformational transitions in confinement, such as protein folding.
Collapse
Affiliation(s)
- Liang Dai
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre, Singapore 117543, Singapore.
| | | | | | | | | |
Collapse
|