1
|
Kaltashov IA, Ivanov DG, Yang Y. Mass spectrometry-based methods to characterize highly heterogeneous biopharmaceuticals, vaccines, and nonbiological complex drugs at the intact-mass level. MASS SPECTROMETRY REVIEWS 2024; 43:139-165. [PMID: 36582075 PMCID: PMC10307928 DOI: 10.1002/mas.21829] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The intact-mass MS measurements are becoming increasingly popular in characterization of a range of biopolymers, especially those of interest to biopharmaceutical industry. However, as the complexity of protein therapeutics and other macromolecular medicines increases, the new challenges arise, one of which is the high levels of structural heterogeneity that are frequently exhibited by such products. The very notion of the molecular mass measurement loses its clear and intuitive meaning when applied to an extremely heterogenous system that cannot be characterized by a unique mass, but instead requires that a mass distribution be considered. Furthermore, convoluted mass distributions frequently give rise to unresolved ionic signal in mass spectra, from which little-to-none meaningful information can be extracted using standard approaches that work well for homogeneous systems. However, a range of technological advances made in the last decade, such as the hyphenation of intact-mass MS measurements with front-end separations, better integration of ion mobility in MS workflows, development of an impressive arsenal of gas-phase ion chemistry tools to supplement MS methods, as well as the revival of the charge detection MS and its triumphant entry into the field of bioanalysis already made impressive contributions towards addressing the structural heterogeneity challenge. An overview of these techniques is accompanied by critical analysis of the strengths and weaknesses of different approaches, and a brief overview of their applications to specific classes of biopharmaceutical products, vaccines, and nonbiological complex drugs.
Collapse
Affiliation(s)
- Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | - Daniil G. Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | | |
Collapse
|
2
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
3
|
Rizzarelli P, Rapisarda M. Matrix-Assisted Laser Desorption and Electrospray Ionization Tandem Mass Spectrometry of Microbial and Synthetic Biodegradable Polymers. Polymers (Basel) 2023; 15:polym15102356. [PMID: 37242931 DOI: 10.3390/polym15102356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The in-depth structural and compositional investigation of biodegradable polymeric materials, neat or partly degraded, is crucial for their successful applications. Obviously, an exhaustive structural analysis of all synthetic macromolecules is essential in polymer chemistry to confirm the accomplishment of a preparation procedure, identify degradation products originating from side reactions, and monitor chemical-physical properties. Advanced mass spectrometry (MS) techniques have been increasingly applied in biodegradable polymer studies with a relevant role in their further development, valuation, and extension of application fields. However, single-stage MS is not always sufficient to identify unambiguously the polymer structure. Thus, tandem mass spectrometry (MS/MS) has more recently been employed for detailed structure characterization and in degradation and drug release monitoring of polymeric samples, among which are biodegradable polymers. This review aims to run through the investigations carried out by the soft ionization technique matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) MS/MS in biodegradable polymers and present the resulting information.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Institute for Polymers, Composites and Biomaterials, Consiglio Nazionale delle Ricerche (CNR), Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Marco Rapisarda
- Institute for Polymers, Composites and Biomaterials, Consiglio Nazionale delle Ricerche (CNR), Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
4
|
Accioni F, Vázquez J, Merinero M, Begines B, Alcudia A. Latest Trends in Surface Modification for Dental Implantology: Innovative Developments and Analytical Applications. Pharmaceutics 2022; 14:455. [PMID: 35214186 PMCID: PMC8876580 DOI: 10.3390/pharmaceutics14020455] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
An increase in the world population and its life expectancy, as well as the ongoing concern about our physical appearance, have elevated the relevance of dental implantology in recent decades. Engineering strategies to improve the survival rate of dental implants have been widely investigated, focusing on implant material composition, geometry (usually guided to reduce stiffness), and interface surrounding tissues. Although efforts to develop different implant surface modifications are being applied in commercial dental prostheses today, the inclusion of surface coatings has gained special interest, as they can be tailored to efficiently enhance osseointegration, as well as to reduce bacterial-related infection, minimizing peri-implantitis appearance and its associated risks. The use of biomaterials to replace teeth has highlighted the need for the development of reliable analytical methods to assess the therapeutic benefits of implants. This literature review considers the state-of-the-art strategies for surface modification or coating and analytical methodologies for increasing the survival rate for teeth restoration.
Collapse
Affiliation(s)
- Francesca Accioni
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Juan Vázquez
- Departamento de Química Orgánica, Universidad de Sevilla, 41012 Seville, Spain;
| | - Manuel Merinero
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
- Departamento de Citología e Histología Normal y Patológica, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| |
Collapse
|
5
|
Voeten RC, van de Put B, Jordens J, Mengerink Y, Peters RAH, Haselberg R, Somsen GW. Probing Polyester Branching by Hybrid Trapped Ion-Mobility Spectrometry-Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1498-1507. [PMID: 33988368 PMCID: PMC8176450 DOI: 10.1021/jasms.1c00071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Trapped ion-mobility spectrometry combined with quadrupole time-of-flight mass spectrometry (TIMS-QTOFMS) was evaluated as a tool for resolving linear and branched isomeric polyester oligomers. Solutions of polyester samples were infused directly into the ion source employing electrospray ionization (ESI). TIMS-MS provides both mobility and m/z data on the formed ions, allowing construction of extracted-ion mobilograms (EIMs). EIMs of polyester molecules showed multimodal patterns, indicating conformational differences among isomers. Subsequent TIMS-MS/MS experiments indicated mobility differences to be caused by (degree of) branching. These assignments were supported by liquid chromatography-TIMS-MS/MS analysis, confirming that direct TIMS-MS provided fast (500 ms/scan) distinction between linear and branched small oligomers. Observing larger oligomers (up to 3000 Da) using TIMS required additional molecular charging to ensure ion entrapment within the mobility window. Molecular supercharging was achieved using m-nitrobenzyl alcohol (NBA). The additional charges on the oligomer structures enhanced mobility separation of isomeric species but also added to the complexity of the obtained fragmentation mass spectra. This complexity could be partly reduced by post-TIMS analyte-decharging applying collision-induced dissociation (CID) prior to Q1 with subsequent isolation of the singly charged ions for further fragmentation. The as-obtained EIM profiles were still quite complex as larger molecules possess more possible structural isomers. Nevertheless, distinguishing between linear and symmetrically branched oligomers was possible based on measured differences in collisional cross sections (CCSs). The established TIMS-QTOFMS approach reliably allows branching information on isomeric polyester molecules up to 3000 Da to be obtained in less than 1 min analysis time.
Collapse
Affiliation(s)
- Robert
L. C. Voeten
- Division
of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam (CASA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bram van de Put
- TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam (CASA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jan Jordens
- DSM
Materials Science Center, Urmonderbaan 22, 6167 MD Geleen, The Netherlands
| | - Ynze Mengerink
- DSM
Materials Science Center, Urmonderbaan 22, 6167 MD Geleen, The Netherlands
| | - Ron A. H. Peters
- Centre
for Analytical Sciences Amsterdam (CASA), Science Park 904, 1098 XH Amsterdam, The Netherlands
- DSM
Resins & Functional Materials, Analytical
Technology Centre, Sluisweg
12, 5145 PE Waalwijk, The Netherlands
- HIMS-Analytical
Chemistry Group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rob Haselberg
- Division
of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam (CASA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Govert W. Somsen
- Division
of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam (CASA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Harris RA, Picache JA, Tomlinson ID, Zlibut E, Ellis BM, May JC, McLean JA, Hercules DM. Mass spectrometry and ion mobility study of poly(ethylene glycol)-based polyurethane oligomers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8662. [PMID: 31731326 DOI: 10.1002/rcm.8662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Commercial-grade polymer synthesis is performed via melt polymerization, which leads to polydispersion. The work reported herein provides a synthetic strategy to produce mono-dispersive polyurethane oligomers and an analytical strategy to distinguish these oligomers, providing chemists with the tools necessary to synthesize and identify specific polymer structures that exhibit a desired property. METHODS Three isomeric poly(ethylene glycol)-polyurethane (PEG-PUR) oligomers were synthesized and analyzed via flow-injection ion mobility mass spectrometry (IM-MS). Each polymer oligomer was injected and run independently via flow injection at 100 μL•min-1 and analyzed in positive ion mode on a drift tube quadrupole time-of-flight (QTOF) instrument. Mobility measurements were determined using a single-field approach. For tandem mass spectrometry (MS/MS) experiments, the sodium-adducted singly charged precursor ion was isolated in the quadrupole and subjected to a range of collision energies. RESULTS In MS experiments, both +1 and +2 sodium-adducted species were observed for each oligomer at m/z 837.4 and 430.2, respectively. When isolated and fragmented via MS/MS, the +1 precursor yielded distinct product ions for each of the three isomeric oligomers. Fragmentation generally occurred at urethane linkages via 1,3- and 1,5-H shift mechanisms. IM was also used to distinguish the three isomers, with greater IM separation observed for the +2 versus the +1 species. CONCLUSIONS Mono-disperse PEG-PUR oligomers were synthesized and analyzed. Although the polymeric oligomers analyzed in this study are quite small and structurally simple, this work serves as a model system for the synthesis and structural characterization of larger, more complex block copolymers.
Collapse
Affiliation(s)
- Rachel A Harris
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jaqueline A Picache
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ian D Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Emanuel Zlibut
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Berkley M Ellis
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jody C May
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - David M Hercules
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
7
|
Charles L, Chendo C, Poyer S. Ion mobility spectrometry - Mass spectrometry coupling for synthetic polymers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8624. [PMID: 31658387 DOI: 10.1002/rcm.8624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This review covers applications of ion mobility spectrometry (IMS) hyphenated to mass spectrometry (MS) in the field of synthetic polymers. MS has become an essential technique in polymer science, but increasingly complex samples produced to provide desirable macroscopic properties of high-performance materials often require separation of species prior to their mass analysis. Similar to liquid chromatography, the IMS dimension introduces shape selectivity but enables separation at a much faster rate (milliseconds vs minutes). As a post-ionization technique, IMS can be hyphenated to MS to perform a double separation dimension of gas-phase ions, first as a function on their mobility (determined by their charge state and collision cross section, CCS), then as a function of their m/z ratio. Implemented with a variety of ionization techniques, such coupling permits the spectral complexity to be reduced, to enhance the dynamic range of detection, or to achieve separation of isobaric ions prior to their activation in MS/MS experiments. Coupling IMS to MS also provides valuable information regarding the 3D structure of polymer ions in the gas phase and regarding how to address the question of how charges are distributed within the structure. Moreover, the ability of IMS to separate multiply charged species generated by electrospray ionization yields typical IMS-MS 2D maps that permit the conformational dynamics of synthetic polymer chains to be described as a function of their length.
Collapse
Affiliation(s)
- Laurence Charles
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13397, Marseille Cedex 20, France
| | - Christophe Chendo
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13397, Marseille Cedex 20, France
| | - Salomé Poyer
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13397, Marseille Cedex 20, France
| |
Collapse
|
8
|
Endres KJ, Barthelmes K, Winter A, Antolovich R, Schubert US, Wesdemiotis C. Collision cross-section analysis of self-assembled metallomacrocycle isomers and isobars via ion mobility mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8717. [PMID: 31894612 PMCID: PMC9285404 DOI: 10.1002/rcm.8717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 05/05/2023]
Abstract
RATIONALE Coordinatively driven self-assembly of transition metal ions and bidentate ligands gives rise to organometallic complexes that usually contain superimposed isobars, isomers, and conformers. In this study, the double dispersion ability of ion mobility mass spectrometry (IM-MS) was used to provide a comprehensive structural characterization of the self-assembled supramolecular complexes by their mass and charge, revealed by the MS event, and their shape and collision cross-section (Ω), revealed by the IM event. METHODS Self-assembled complexes were synthesized by reacting a bis(terpyridine) ligand exhibiting a 60o dihedral angle between the two ligating terpyridine sites (T) with divalent Zn, Ni, Cd, or Fe. The products were isolated as (Metal2+ [T])n (PF6 )2n salts and analyzed using IM-MS after electrospray ionization (ESI) which produced several charge states from each n-mer, depending on the number of PF6 - anions lost upon ESI. Experimental Ω data, derived using IM-MS, and computational Ω predictions were used to elucidate the size and architecture of the complexes. RESULTS Only macrocyclic dimers, trimers, and tetramers were observed with Cd2+ , whereas Zn2+ formed the same plus hexameric complexes. These two metals led to the simplest product distributions and no linear isomers. In sharp contrast, Ni2+ and Fe2+ formed all possible ring sizes from dimer to hexamer as well as various linear isomers. The experimental and theoretical Ω data indicated rather planar macrocyclic geometries for the dimers and trimers, twisted 3D architectures for the larger rings, and substantially larger sizes with spiral conformation for the linear congeners. Adding PF6 - to the same complex was found to mainly cause size contraction due to new stabilizing anion-cation interactions. CONCLUSIONS Complete structural identification could be accomplished using ESI-IM-MS. Our results affirm that self-assembly with Cd2+ and Zn2+ proceeds through reversible equilibria that generate the thermodynamically most stable structures, encompassing exclusively macrocyclic architectures that readily accommodate the 60o ligand used. In contrast, complexation with Ni2+ and Fe2+ , which form stronger coordinative bonds, proceeds through kinetic control, leading to more complex mixtures and kinetically trapped less stable architectures, such as macrocyclic pentamers and linear isomers.
Collapse
Affiliation(s)
| | - Kevin Barthelmes
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 10JenaGermany
- Department of Materials and Applied ChemistryNihon University1‐8‐14 Kanda SurugadaiChiyoda‐kuTokyoJapan
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 10JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller Universität JenaPhilosophenweg 7JenaGermany
| | | | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 10JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller Universität JenaPhilosophenweg 7JenaGermany
| | - Chrys Wesdemiotis
- Department of Polymer ScienceUniversity of AkronAkronOHUSA
- Department of ChemistryUniversity of AkronAkronOHUSA
| |
Collapse
|
9
|
Rizzarelli P, Rapisarda M, Valenti G. Mass spectrometry in bioresorbable polymer development, degradation and drug-release tracking. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8697. [PMID: 31834664 DOI: 10.1002/rcm.8697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A detailed characterization of polymeric matrices and appropriate degradation monitoring techniques are required to sustain the development of new materials as well as to enlarge the applications of the old ones. In fact, polymer analysis is essential for the clarification of the intrinsic relationship between structure and properties that ascertains the industrial applications in diverse fields. In bioresorbable and biodegradable polymers, the role of analytical methods is dual since it is pointed both at the polymeric matrices and at degradation tracking. The structural architectures, the mechanical and morphological properties, and the degradation rate, are of outstanding importance for a specific application. In some cases, the complexity of the polymer structure, the processes of decomposition or the low concentration of the degradation products need the concurrent use of different complementary analytical techniques to give detailed information of the reactions taking place. Several analytical methods are used in bioresorbable polymer development and degradation tracking. Among them, mass spectrometry (MS) plays an essential role and it is used to refine polymer syntheses, for its high sensitivity, to highlight degradation mechanism by detecting compounds present in trace amounts, or to track the degradation product profile and to study drug release. In fact, elucidation of reaction mechanisms and polymer structure, attesting to the purity and detecting defects as well as residual catalysts, in biodegradable and bioresorbable polymers, requires sensitive analytical characterization methods that are essential in providing an assurance of safety, efficacy and quality. This review aims to provide an overview of the MS strategies used to support research and development of resorbable polymers as well as to investigate their degradation mechanisms. It is focused on the most significant studies concerning synthetic bioresorbable matrices (polylactide, polyglycolide and their copolymers, polyhydroxybutyrate, etc.), published in the last ten years.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Marco Rapisarda
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Graziella Valenti
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| |
Collapse
|
10
|
Atakay M, Aksakal F, Bozkaya U, Salih B, Wesdemiotis C. Conformational Characterization of Polyelectrolyte Oligomers and Their Noncovalent Complexes Using Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:441-449. [PMID: 32031387 DOI: 10.1021/jasms.9b00135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly-l-lysine (PLL), polystyrenesulfonate (PSS), and a mixture of these polyelectrolytes were investigated by electrospray ionization ion mobility mass spectrometry. The IM step confirmed the formation of noncovalent (i.e., supramolecular) complexes between these polyelectrolytes, which were detected in various charge states and stoichiometries in the presence of their constituents. Experimental and theoretical collision cross sections (CCSs) were derived for both PLL and PSS oligomers as well as their noncovalent assemblies. PSS chains showed higher compactness with increasing size as compared to PLL chains, indicating that the intrinsic conformations of the polyelectrolytes depend on the nature of the functional groups on their side chains. The CCS data for the noncovalent complexes further revealed that assemblies with higher PLL content have higher CCS values than other compositions of similar mass and that PLL-PSS complex formation is accompanied by significant size contraction.
Collapse
Affiliation(s)
- Mehmet Atakay
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Fatma Aksakal
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Uğur Bozkaya
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Bekir Salih
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Chrys Wesdemiotis
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
11
|
Boutin JA, Tartar AL, van Dorsselaer A, Vaudry H. General lack of structural characterization of chemically synthesized long peptides. Protein Sci 2019; 28:857-867. [PMID: 30851143 PMCID: PMC6459998 DOI: 10.1002/pro.3601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023]
Abstract
Many peptide chemistry scientists have been reporting extremely interesting work on the basis of chemical peptides for which the only characterization was their purity, mass, and biological activity. It seems slightly overenthusiastic, as many of these structures should be thoroughly characterized first to demonstrate the uniqueness of the structure, as opposed to the uniqueness of the sequence. Among the peptides of identical sequences in the final chemical preparation, what amount of well-folded peptide supports the measured activity? The activity of a peptide preparation cannot prove the purity of the desired peptide. Therefore, greater care should be taken in characterizing peptides, particularly those coming from chemical synthesis. At a time when the pharmaceutical industry is changing its paradigm by moving substantially from small molecules to biologics to better serve patients' needs, it is important to understand the limitations of the descriptions of these products and to start to apply the same "good laboratory practices" to our peptide research. Here, we attempt to delineate how synthetic peptides are described and characterized and what will be needed to describe them in regards to how they are well-folded and homogeneous in their tertiary structure. Older studies were done when the tools were not yet discovered, but more recent publications are still lacking proper descriptions of these peptides. Modern tools of analysis are capable of segregating folded and unfolded peptides, even if the preparation is biologically active.
Collapse
Affiliation(s)
- Jean A. Boutin
- Institut de Recherches Internationales Servier50 rue Carnot, 92284, Suresnes‐CedexFrance
| | - André L. Tartar
- Faculté de Pharmacie 3rue du Professeur Laguesse, BP83 ‐ 59006, Lille‐CedexFrance
| | - Alain van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio‐Organique, Département des Sciences AnalytiquesInstitut Pluridisciplinaire Hubert CurienUMR 7178 (CNRS‐UdS), ECPM, 25 rue Becquerel, F67087, Strasbourg‐Cedex 2France
| | - Hubert Vaudry
- Plate‐Forme de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN)Institut de Recherche et d'Innovation Biomédicales (IRIB), Université de Rouen76821, Mont‐Saint‐Aignan CedexFrance
| |
Collapse
|
12
|
Chen XP, Zhang F, Guo YL. Validating an ion mobility spectrometry-quadrupole time of flight mass spectrometry method for high-throughput pesticide screening. Analyst 2019; 144:4835-4840. [PMID: 31290495 DOI: 10.1039/c9an00873j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The utility of adding ion mobility (IM) to quadrupole time of flight mass spectrometry (IM-QTOF MS) for highly effective analysis of multiple pesticides in complex matrices was evaluated. Based on an in-house IM-MS database, the identification was performed through the match of the protonated ion ([M + H]+) and the CCS value. Moreover, the structural confirmation was achieved by using the accurate masses of [M + H]+ with its fragment ions, and the reference CCS value. The method did not require chromatographic separation and the analysis time of each measurement cycle is 1.6 min. The "cleaned" IM-MS spectra afforded by the drift time filtration improved the reliability of structural confirmation. As a result, the limit of detection (LOD) of 92% of test pesticides under the APCI mode and 58% of test pesticides under the ESI mode spiked in scallion was not more than 20 ng mL-1. In the analysis of practical samples, the identification of pyrimethanil was confirmed in celery, and benalaxyl and tebuconazole were identified as false positives in scallion. The time-saving, extended-scope and high-throughput method described in this work is capable of determining multiple pesticide residues in complex matrices with high sensitivity for monitoring applications.
Collapse
Affiliation(s)
- Xiu-Ping Chen
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | | | | |
Collapse
|
13
|
Sallam S, Dolog I, Paik BA, Jia X, Kiick KL, Wesdemiotis C. Sequence and Conformational Analysis of Peptide–Polymer Bioconjugates by Multidimensional Mass Spectrometry. Biomacromolecules 2018; 19:1498-1507. [DOI: 10.1021/acs.biomac.7b01694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sahar Sallam
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, Jazan University, Jazan, Saudi Arabia
| | - Ivan Dolog
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Bradford A. Paik
- Department of Material Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Xinqiao Jia
- Department of Material Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Material Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|