1
|
Li P, Li M, Sun B, Li X, Xiao Q, Yue D, Gao S, Wang B, Jiang X, Jiang J, Zhou Z. Integrated Three-Dimensional Microdevice with a Modified Surface for Enhanced DNA Separation from Biological Samples. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55297-55307. [PMID: 38058108 DOI: 10.1021/acsami.3c11681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Functional interfaces and devices for rapid adsorption and immobilization of nucleic acids (NAs) are significant for relevant bioengineering applications. Herein, a microdevice with poly(acrylic acid) (PAA) photosensitive resin was integrated by three-dimensional (3D) printing, named DPAA for short. Precise microscale structures and abundant surface carboxyl functional groups were fabricated for fast and high-throughput deoxyribonucleic acid (DNA) separation. Surface modification was then done using polydopamine (PDA) and poly(ethylene glycol) (PEG) to obtain modified poly(acrylic acid) (PAA)-based devices DPDA-PAA and DPEG-PAA rich in amino and hydroxyl groups, respectively. The fabricated device DPAA possessed superior printing accuracy (40-50 μm). Functionalization of amino and hydroxyl was successful, and the modified devices DPDA-PAA and DPEG-PAA maintained a high thermal stability like DPAA. Surface potential analysis and molecular dynamics simulation indicated that the affinity for DNA was in the order of DPDA-PAA > DPEG-PAA > DPAA. Further DNA separation experiments confirmed the high throughput and high selectivity of DNA separation performance, consistent with the predicted affinity results. DPDA-PAA showed relatively the highest DNA extraction yield, while DPEG-PAA was the worst. An acidic binding system is more favorable for DNA separation and recovery. DPDA-PAA showed significantly better DNA extraction performance than DPAA in a weakly acidic environment (pH 5.0-7.0), and the average DNA yield of the first elution was 2.16 times that of DPAA. This work validates the possibility of modification on integrated 3D microdevices to improve their DNA separation efficiency effectively. It also provides a new direction for the rational design and functionalization of bioengineering separators based on nonmagnetic methods. It may pave a new path for the highly efficient polymerase chain reaction diagnosis.
Collapse
Affiliation(s)
- Peipei Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
| | - Menghang Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Bing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xinrong Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qianying Xiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dongmei Yue
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
| | - Shan Gao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
| | - Bai Wang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jingwei Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
| | - Zunchun Zhou
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
| |
Collapse
|
2
|
Zhang J, Wang D, Li Y, Liu L, Liang Y, He B, Hu L, Jiang G. Application of three-dimensional printing technology in environmental analysis: A review. Anal Chim Acta 2023; 1281:341742. [PMID: 38783729 DOI: 10.1016/j.aca.2023.341742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 05/25/2024]
Abstract
The development of environmental analysis devices with high performance is essential to assess the potential risks of environmental pollutants. However, it is still challenging to develop environmental analysis equipment with miniaturization, portability, and high sensitivity based on traditional processing techniques. In recent years, the popularity of 3D printing technology (3DP) with high precision, low cost, and unlimited design freedom has provided opportunities to solve the existing challenges of environmental analysis. 3D printing has brought solutions to promote the high performance and versatility of environmental analysis equipment by optimizing printing materials, enhancing equipment structure, and integrating multidisciplinary technology. In this paper, we comprehensively review the latest progress in 3D printing in various aspects of environmental analysis procedures, including but not limited to sample collection, pretreatment, separation, and detection. We highlight their advantages and challenges in determining various environmental contaminants through passive sampling, solid-phase extraction, chromatographic separation, and mass spectrometry detection. The manufacturing of 3D-printed environmental analysis devices is also discussed. Finally, we look forward to their development prospects and challenges.
Collapse
Affiliation(s)
- Junpeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingying Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
3
|
Chen X, Latif M, Gandhi VD, Chen X, Hua L, Fukushima N, Larriba-Andaluz C. Enhancing Separation and Constriction of Ion Mobility Distributions in Drift Tubes at Atmospheric Pressure Using Varying Fields. Anal Chem 2022; 94:5690-5698. [PMID: 35357157 DOI: 10.1021/acs.analchem.2c00467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A linearly decreasing electric field has been previously proven to be effective for diffusional correction of ions in a varying field drift tube (VFDT) system, leading to higher resolving powers compared to a conventional drift tube due to its capacity to narrow distributions midflight. However, the theoretical predictions in resolving power of the VFDT were much higher than what was observed experimentally. The reason behind this discrepancy has been identified as the difference between the theoretically calculated resolving power (spatial) and the experimental one (time). To match the high spatial resolving power experimentally, a secondary high voltage pulse (HVP) at a properly adjusted time is used to provide the ions with enough momentum to increase their drift velocity and hence their time-resolving power. A series of systematic numerical simulations and experimental tests have been designed to corroborate our theoretical findings. The HVP-VFDT atmospheric pressure portable system improves the resolving power from the maximum expected of 60-80 for a regular drift tube to 250 in just 21 cm in length and 7kV, an unprecedent accomplishment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States.,Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohsen Latif
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| | - Viraj D Gandhi
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States.,Purdue University, West Lafayette, Indiana 47907, United States
| | - Xuemeng Chen
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States.,Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia
| | - Leyan Hua
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| | | | - Carlos Larriba-Andaluz
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
4
|
Huge BJ, Young K, Kerr C, Champion MM, Dovichi NJ. 3-D printed injection system for capillary electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1163-1168. [PMID: 35254370 PMCID: PMC8934206 DOI: 10.1039/d2ay00075j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Commercial systems for capillary electrophoresis are designed for the unattended analysis of several samples, and are usually large, complex, and expensive. We report a compact system for manual injection of a single sample in capillary electrophoresis, which is ideal for method development and for student training. The injector consists of two parts that are manufactured by three-dimensional printing (STL and STEP files are included as ESI). One part is immobile and holds an electrode for powering electrophoresis and a gas line for pressurized injection and pumping fluids through the capillary. The second part is removable and is used to hold washing solutions, separation electrolyte, or sample. Conventional machining is used to tap holes to hold the electrode, separation capillary, gas line, and safety interlock. The system is used for either pressure or electrokinetic sample injection, and can be used to pump fluids through the capillary for changing background electrolytes and reconditioning the capillary between runs. We coupled the injection system to our high-dynamic range laser-induced fluorescence detector and evaluated the system by performing capillary zone electrophoresis on solutions of fluorescein. Electrokinetic injection produced a linear response across five orders of magnitude dynamic range (slope of the log-log calibration curve was 1.02), concentration detection limits of 5 pM, and mass detection limits of 1 zmol. Pressure injection produced a linear response across at least four orders of magnitude (slope of the log-log calibration curve was 0.92), concentration detection limits of 2 pM, and mass detection limits of 10 zmol.
Collapse
Affiliation(s)
- Bonnie Jaskowski Huge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Kevin Young
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Caitlin Kerr
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
García-Rojas NS, Guillén-Alonso H, Martínez-Jarquín S, Moreno-Pedraza A, Soto-Rodríguez LD, Winkler R. Build, Share and Remix: 3D Printing for Speeding Up the Innovation Cycles in Ambient Ionisation Mass Spectrometry (AIMS). Metabolites 2022; 12:185. [PMID: 35208258 PMCID: PMC8874637 DOI: 10.3390/metabo12020185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023] Open
Abstract
Ambient ionisation mass spectrometry (AIMS) enables studying biological systems in their native state and direct high-throughput analyses. The ionisation occurs in the physical conditions of the surrounding environment. Simple spray or plasma-based AIMS devices allow the desorption and ionisation of molecules from solid, liquid and gaseous samples. 3D printing helps to implement new ideas and concepts in AIMS quickly. Here, we present examples of 3D printed AIMS sources and devices for ion transfer and manipulation. Further, we show the use of 3D printer parts for building custom AIMS sampling robots and imaging systems. Using 3D printing technology allows upgrading existing mass spectrometers with relatively low cost and effort.
Collapse
Affiliation(s)
- Nancy Shyrley García-Rojas
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| | - Héctor Guillén-Alonso
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
- Department of Biochemical Engineering, Nacional Technological Institute, Celaya 38010, Mexico
| | | | - Abigail Moreno-Pedraza
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| | - Leonardo D. Soto-Rodríguez
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| |
Collapse
|
6
|
Hartner NT, Wink K, Raddatz CR, Thoben C, Schirmer M, Zimmermann S, Belder D. Coupling Droplet Microfluidics with Ion Mobility Spectrometry for Monitoring Chemical Conversions at Nanoliter Scale. Anal Chem 2021; 93:13615-13623. [PMID: 34592821 DOI: 10.1021/acs.analchem.1c02883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce the coupling of droplet microfluidics and ion mobility spectrometry (IMS) to address the challenges of label-free and chemical-specific detection of compounds in individual droplets. In analogy to the established use of mass spectrometry, droplet-IMS coupling can be also achieved via electrospray ionization but with significantly less instrumental effort. Because IMS instruments do not require high-vacuum systems, they are very compact, cost-effective, and robust, making them an ideal candidate as a chemical-specific end-of-line detector for segmented flow experiments. Herein, we demonstrate the successful coupling of droplet microfluidics with a custom-built high-resolution drift tube IMS system for monitoring chemical reactions in nL-sized droplets in an oil phase. The analytes contained in each droplet were assigned according to their characteristic ion mobility with limit of detections down to 200 nM to 1 μM and droplet frequencies ranging from 0.1 to 0.5 Hz. Using a custom sheath flow electrospray interface, we have further achieved the chemical-specific monitoring of a biochemical transformation catalyzed by a few hundred yeast cells, at single droplet level.
Collapse
Affiliation(s)
- Nora T Hartner
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Konstantin Wink
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian-Robert Raddatz
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Christian Thoben
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Martin Schirmer
- Helmholtz Centre for Environmental Research - UFZ Leipzig, Leipzig 04318, Germany
| | - Stefan Zimmermann
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Li P, Li M, Yuan Z, Jiang X, Yue D, Ye B, Zhao Z, Jiang J, Fan Q, Zhou Z, Chen H. 3D printed integrated separator with hybrid micro-structures for high throughput and magnetic-free nucleic acid separation from organism samples. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Schrader RL, Marsh BM, Cooks RG. Atmospheric Pressure Drift Tube Ion Mobility Spectrometry Coupled with Two-Dimensional Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2105-2109. [PMID: 34232037 DOI: 10.1021/jasms.1c00180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atmospheric pressure drift tube ion mobility was coupled with two-dimensional tandem mass spectrometry (2D MS/MS) in a linear ion trap to simultaneously collect ion mobility and the entire MS/MS data domain. Utilizing ion intensities from precursor ion and neutral loss scan lines, ion mobility spectra of multiple compounds with particular functional groups were acquired in a single experiment. Functional group-specific ion mobility spectra were demonstrated for a standard mixture of lipids. Additionally, ion mobility was used to separate isobaric ions prior to 2D MS/MS. The combination of these two methods offers improvements for the analysis of complex mixtures.
Collapse
Affiliation(s)
- Robert L Schrader
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M Marsh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Zhao Y, Jiang S, Bai Y, Huang X, Xiong B. 3D-Printed Microfluidic Nanoelectrospray Ionization Source Based on Hydrodynamic Focusing. ANAL SCI 2021; 37:897-903. [PMID: 33132231 DOI: 10.2116/analsci.20p219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanoelectrospray ionization (nESI) mass spectrometry (MS) is an ideal detection method for microfluidic chips, and its performances depend on nESI emitters. However, the fabrication of monolithic nESI emitters in chips was difficult. Herein, we propose a three-dimensional (3D) printing method to develop a microfluidic nanoelectrospray ionization source (NIS), composed of a nESI emitter and other components. Firstly, the NIS was compatible with a 50 - 500 nL min-1 nanoflows by imposing 3D hydrodynamic focusing to compensate for the total flow rate, achieving a 7.2% best relative standard deviation in the total ion current (TIC) profiles. Additionally, it was applied to probe thirteen organic chemicals, insulin, and lysozyme with adequate signal-to-noise ratios and an accuracy of m/z between 9.02 × 10-1 and 1.48 × 103 ppm. Finally, the NIS achieved comparable limits of detection compared with its commercial counterpart. Considering the standardized preparation of NIS, it would be a potential option to develop 3D-printed customized Chip-MS platforms.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University
| | - Shichang Jiang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University
| | - Yuna Bai
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University
| | - Xueying Huang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University.,Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University
| | - Bo Xiong
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University.,Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University
| |
Collapse
|
10
|
Grajewski M, Hermann M, Oleschuk R, Verpoorte E, Salentijn G. Leveraging 3D printing to enhance mass spectrometry: A review. Anal Chim Acta 2021; 1166:338332. [DOI: 10.1016/j.aca.2021.338332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022]
|
11
|
Guillén-Alonso H, Rosas-Román I, Winkler R. The emerging role of 3D-printing in ion mobility spectrometry and mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:852-861. [PMID: 33576357 DOI: 10.1039/d0ay02290j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
3D-printing is revolutionizing the rapid prototyping in analytical chemistry. In the last few years, we observed the development of 3D-printed components for ion studies, such as ion sources, ion transfer and ion mobility spectrometry (IMS) devices. Often, 3D-printed gadgets add functions to existing mass spectrometry (MS) systems. Custom adapters improve the sensibility for coupling with ambient ionization and upstream chromatography methods, and sample preparation units optimize the following MS analyses. Besides, 3D-printer parts are suitable for constructing custom analytical robots and mass imaging systems. Some of those assemblies implement new concepts and are commercially not available. An essential aspect of using 3D-printing is the fast turnover of design improvements, which is motivated by permissive licenses. The easy reproducibility and exchange of ideas lead to a community-driven development, which is accompanied by economic advantages for public research and education.
Collapse
|
12
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
13
|
Shih CP, Yu KC, Ou HT, Urban PL. Portable Pen-Probe Analyzer Based on Ion Mobility Spectrometry for in Situ Analysis of Volatile Organic Compounds Emanating from Surfaces and Wireless Transmission of the Acquired Spectra. Anal Chem 2021; 93:2424-2432. [DOI: 10.1021/acs.analchem.0c04369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chun-Pei Shih
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Kai-Chiang Yu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Hsuan-Ting Ou
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Pawel L. Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Zemaitis KJ, Wood TD. Integration of 3D-printing for a desorption electrospray ionization source for mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:104102. [PMID: 33138599 PMCID: PMC7538165 DOI: 10.1063/5.0004626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The field of ambient ionization mass spectrometry has witnessed the development of many novel and capable methods for the analysis and imaging of surfaces, with desorption electrospray ionization being a prominent technique that has been commercialized. The adaptation of this technique to existing mass spectrometry platforms requires a laboratory-built solution manufactured with the capability of fine, stable adjustments of the electrospray emitter for liquid or solid sampling purposes. The development, fabrication, and machining require tens of hours of labor for many custom solutions. Herein described is a highly modifiable alternative approach for the fabrication of a desorption electrospray ionization source, using computer-aided design and fused deposition modeling to three-dimensionally print a source platform that utilizes standard accessories of a commercial Bruker Daltonics mass spectrometer. Three-dimensional printing allows for the inexpensive, rapid development of highly modifiable plastic parts, with the total printing time of the apparatus requiring a singular day and only a few dollars of material using a consumer grade printer. To demonstrate the utility of this printed desorption electrospray ionization source, it was fitted on an unmodified Fourier transform ion cyclotron resonance mass spectrometer for a lipid fingerprint analysis in serial sections of rat brain tissue, with the acquisition of line scans of dye-coated slides for the demonstration of serial acquisition.
Collapse
Affiliation(s)
| | - Troy D. Wood
- Author to whom correspondence should be addressed:
| |
Collapse
|
15
|
Schrader RL, Marsh BM, Cooks RG. Fourier Transform-Ion Mobility Linear Ion Trap Mass Spectrometer Using Frequency Encoding for Recognition of Related Compounds in a Single Acquisition. Anal Chem 2020; 92:5107-5115. [PMID: 32122122 DOI: 10.1021/acs.analchem.9b05507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert L. Schrader
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M. Marsh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Kirk AT, Bohnhorst A, Raddatz CR, Allers M, Zimmermann S. Ultra-high-resolution ion mobility spectrometry-current instrumentation, limitations, and future developments. Anal Bioanal Chem 2019; 411:6229-6246. [PMID: 30957205 DOI: 10.1007/s00216-019-01807-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022]
Abstract
With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving power are explained and compared between the different instruments. This allows understanding the current limitations of resolving power and how ion mobility spectrometers may progress in the future. Graphical abstract.
Collapse
Affiliation(s)
- Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany.
| | - Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Christian-Robert Raddatz
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Maria Allers
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| |
Collapse
|
17
|
Hollerbach A, Fedick PW, Cooks RG. Ion Mobility–Mass Spectrometry Using a Dual-Gated 3D Printed Ion Mobility Spectrometer. Anal Chem 2018; 90:13265-13272. [PMID: 30281279 DOI: 10.1021/acs.analchem.8b02209] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Adam Hollerbach
- Chemistry Department, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Patrick W. Fedick
- Chemistry Department, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - R. Graham Cooks
- Chemistry Department, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
|
19
|
Cooks RG, Yan X. Mass Spectrometry for Synthesis and Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:1-28. [PMID: 29894228 DOI: 10.1146/annurev-anchem-061417-125820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mass spectrometry is the science and technology of ions. As such, it is concerned with generating ions, measuring their properties, following their reactions, isolating them, and using them to build and transform materials. Instrumentation is an essential element of these activities, and analytical applications are one driving force. Work from the Aston Laboratories at Purdue University's Department of Chemistry is described here, with an emphasis on accelerated reactions of ions in solution and small-scale synthesis; ion/surface collision processes, including surface-induced dissociation (SID) and ion soft landing; and applications to tissue imaging. Our special interest in chirality and the chemistry behind the origins of life is also featured together with the exciting area of tissue diagnostics.
Collapse
Affiliation(s)
- R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA;
| | - Xin Yan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA;
- Current affiliation: Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|