1
|
Tian Y, Lu X, Xiao D, Zhou C. Long-Lasting Chemiluminescence Based on Functionalized Multicolor Protein Capsules for Multiple Visualization Detection of Avian Influenza Virus Biomarkers. Anal Chem 2024; 96:16978-16984. [PMID: 39392770 DOI: 10.1021/acs.analchem.4c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Long-lasting chemiluminescence (CL) emissions are necessary for improving the detection accuracy and expanding the application scope. Here, we have synthesized three oil-in-water (O/W) multicolor protein capsules (LCBA, F/LCBA, and RB/F/LCBA) using a simple ultrasound method and have engineered specific target-triggered catalytic hairpin assembly on their surface and chemiluminescence resonance energy transfer inside. Consequently, three multicolor capsules exhibit excellent structural stability, generate blue-, green-, and red-colored emissions when reacting with H2O2, have long-lasting CL emission over 1 h, and successfully achieve the accurate multiple visualization detection of avian influenza virus subtype targets. Without the need for complex instruments and analysis procedures, the CL imaging assays can be carried out and recorded with a common smartphone. The detection limits for visualizing H1N1, H7N9, and H5N1 are 5.5, 7.6, and 9.0 pM, respectively. There is a linear range between 20.0 and 625 pM and excellent selectivity against interfering DNA. Furthermore, visualization detection has been successfully applied for the detection of H1N1, H7N9, and H5N1 in healthy human serum samples. With these merits, this facile, ultrasensitive, and multiple visualization sensor has potential applications in point-of-care testing and early diagnosis.
Collapse
Affiliation(s)
- Yafei Tian
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xueyun Lu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Xiao Y, Zhang T, Zhang H. Recent advances in the peptide-based biosensor designs. Colloids Surf B Biointerfaces 2023; 231:113559. [PMID: 37738870 DOI: 10.1016/j.colsurfb.2023.113559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Biosensors have rapidly emerged as a high-sensitivity and convenient detection method. Among various types of biosensors, optical and electrochemical are the most commonly used. Conventionally, antibodies have been employed to ensure specific interaction between the transmission material and analytes. However, there has been increasing recognition of peptides as a promising recognition element for biosensor development in recent years. The use of peptides as recognition elements provides high level of specificity, sensitivity, and stability for the detection process. The combination of peptide designs and optical or electrochemical detection methods has significantly improved biosensor efficacy. These advancements present opportunities for developing biosensors with diverse functions that can be used to lay a strong scientific foundation for the development of personalized medicine and various other fields. This paper reviews the recent advancements in the development and application of peptide-based optical and electrochemical biosensors, as well as their prospects as a sensor type.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
3
|
Wang C, Wang Y, Liu J, Li F, Gai P. Nanozyme-Based Biofuel Cell Ingeniously Coupled with Luminol Chemiluminescence System through In Situ Co-Reactant Generation for Dual-Signal Biosensing. Anal Chem 2023; 95:15763-15768. [PMID: 37816228 DOI: 10.1021/acs.analchem.3c03270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Classical luminol-based chemiluminescence (CL) is the process of emitting light enhanced by the addition of coreactant hydrogen peroxide (H2O2). To address the instability issue of H2O2 decomposition, herein, we proposed a nanozyme-based biofuel cell (BFC) ingeniously coupled with a luminol CL system via in situ generation of H2O2. Specifically, the gold nanoparticle (AuNP) nanozyme with glucose oxidase-like activity can act as the anodic enzyme of BFC to catalyze the oxidation of glucose to produce H2O2 and electrons. In this case, H2O2 as a coreactant enhanced the CL intensity and the cathode of the BFC obtained electrons to generate the open circuit voltage (EOCV) signals. As a result, a dual-signal biosensing platform was successfully constructed. Interestingly, the AuNPs-catalyzed system operates in an alkaline medium, which precisely meets the pH requirement for luminol luminescence. Such a BFC-CL system not only greatly lessens the effect of unstable exogenous H2O2 on the signal stability but also enhances the CL of luminol. Furthermore, both CL and EOCV signals present a positive correlation with the glucose concentration. Therefore, this novel BFC-CL system shows good performance for dual-signal biosensing, which would serve as a valuable guideline for the design and application of BFC-based self-powered or CL biosensors.
Collapse
Affiliation(s)
- Cui Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yuqing Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Junhua Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
4
|
Wang M, Shu J, Wang S, Lyu A, Wang Y, Huang D, Cui H. N-(4-Aminobutyl)- N-ethylisopropanol and Co 2+ Dual-Functionalized Core-Shell Fe 3O 4@Au/Ag Magnetic Nanomaterials with Strong and Stable Chemiluminescence for a Label-Free Exosome Immunosensor. Anal Chem 2023; 95:12982-12991. [PMID: 37587428 DOI: 10.1021/acs.analchem.3c03135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Recently, magnetic beads (MBs) are moving toward chemiluminescence (CL) functional magnetic nanomaterials with a great potential for constructing label-free immunosensors. However, most of the CL-functionalized MBs suffer from scarce binding sites, easy aggregation, and leakage of CL reagents, which will ultimately affect the analytical performance of immunosensors. Herein, by using core-shell Fe3O4@Au/Ag magnetic nanomaterials as a nanoplatform, a novel N-(4-aminobutyl)-N-ethylisopropanol (ABEI) and Co2+ dual-functionalized magnetic nanomaterial, namely, Fe3O4@Au/Ag/ABEI/Co2+, with strong and stable CL emission was successfully synthesized. Its CL intensity was 36 and 3.5 times higher than that of MB@ABEI-Au/Co2+ and ABEI and Co2+ dual-functionalized chemiluminescent MBs previously reported by our group, respectively. It was found that the excellent CL performance of Fe3O4@Au/Ag/ABEI/Co2+ could be attributed to the enrichment effect of the Au/Ag shell and the synergistic enhance effect of the Au/Ag shell and Co2+. A related CL mechanism has been proposed. Afterward, based on the intense and stable CL emission of Fe3O4@Au/Ag/ABEI/Co2+, a sensitive and effective label-free CL immunosensor for exosome detection was established. It exhibited excellent analytical performance with a wide detection range of 3.1 × 103 to 3.1 × 108 particles/mL and a low detection limit of 2.1 × 103 particles/mL, which were better than the vast majority of the reported CL immunosensors. Moreover, the proposed label-free CL immunosensor was successfully used to detect exosomes in human serum samples and enabled us to distinguish healthy persons and lung cancer patients. It has the potential to be a powerful tool for exosome study and early cancer diagnosis.
Collapse
Affiliation(s)
- Manli Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangnan Shu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shanshan Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Aihua Lyu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yisha Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dabing Huang
- Department of Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of the University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Hua Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Alizadeh N, Yoosefian J. Chemical reduction as a facile colorimetric approach for selective TNT detection by spectrophotometry and photothermal lens spectroscopy. Talanta 2023; 257:124334. [PMID: 36773511 DOI: 10.1016/j.talanta.2023.124334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
In this study, the simple determination of TNT is achieved through the vivid stable red color products generated after chemically reduction by NaBH4 as a common and accessible reducing/colorimetric reagent. Some other nitroaromatics were impressed under reduction reaction and led to the colorful products. The color of these reduced nitroaromatics were unstable and approximately vanished after some few minutes which ameliorated the selectivity in TNT determination. Utilizing the time-dependent selectivity, the method was applied specifically for discriminating of TNT from other nitroaromatic compounds (NACs). UV-vis spectrophotometry and photothermal lens spectrometry were employed as detection techniques. The former was simpler and more available in various laboratories while the latter provides higher sensitivity. It was revealed that the photothermal lens responses were linear from 2.0 to 55.0 nM with a limit of detection (LOD) of about 0.8 nM. The LOD of the photothermal lens measurement were found to be 241 times lower than that of the UV-vis spectrophotometry in TNT quantification. The evolved method was successfully carried out for TNT vapor determination after trapping into the colorimetric reagent. The recoveries and relative standard deviations (RSD, n = 3) calculated for 3 gas samples were ≥91% and ≤7%, respectively.
Collapse
Affiliation(s)
- Naader Alizadeh
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Javad Yoosefian
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
6
|
Tian Y, Zhang Y, Lu X, Xiao D, Zhou C. Multifunctionalized flower-like gold nanoparticles with high chemiluminescence for label-free sensing of the hepatitis C virus core protein. J Mater Chem B 2023; 11:2200-2206. [PMID: 36785906 DOI: 10.1039/d2tb02168d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Developing functionalized nanomaterials with strong chemiluminescence (CL) properties is highly significant for ultrasensitive bioanalysis. Here, we report chitosan (CS), luminol, and Co2+-functionalized flower-like gold nanoparticles (Co2+/CS/Lum/AuNFs) with strong CL for the label-free sensing of the HCV core protein (HCVcp). The Co2+/CS/Lum/AuNFs exhibited a greatly enhanced CL emission at around 425 nm, which is 50 times stronger than that of CS/Lum/AuNFs, and is superior to other commonly reported CL nanomaterials. The HCVcp aptamer (HCVcp-apt) further functionalized the surface of the Co2+/CS/Lum/AuNFs through electrostatic interactions blocked the Co2+ catalytic site, depressing the CL. Owing to the high affinity of HCVcp for the HCVcp-apt, the presence of HCVcp predominated its binding and effectively separated the HCVcp-apt from the surface of the Co2+/CS/Lum/AuNFs, so that the CL intensity was significantly enhanced. As the results showed, the HCVcp-apt/Co2+/CS/Lum/AuNFs were successfully used to detect the HCVcp in human serum samples with a linear range from 0.50 ng mL-1 to 1.00 μg mL-1, a detection limit of 0.16 ng mL-1 and an excellent selectivity over other analogs. The strategy is universal for the development of the ultrasensitive detection of other proteins in the field of early disease diagnostics.
Collapse
Affiliation(s)
- Yafei Tian
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yujiao Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Xueyun Lu
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
7
|
Wei D, Xiong D, Zhu N, Wang Y, Hu X, Zhao B, Zhou J, Yin D, Zhang Z. Copper Peroxide Nanodots Encapsulated in a Metal–Organic Framework for Self-Supplying Hydrogen Peroxide and Signal Amplification of the Dual-Mode Immunoassay. Anal Chem 2022; 94:12981-12989. [DOI: 10.1021/acs.analchem.2c01068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dali Wei
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dinghui Xiong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xialin Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Wu Y, Wang J, Cui H. Chemiluminescent magnetic nanoparticles with good catalytic activity and rapid separation capability and sensitive sensing for H 2O 2. Anal Bioanal Chem 2022; 414:367-375. [PMID: 34363088 PMCID: PMC8346345 DOI: 10.1007/s00216-021-03597-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023]
Abstract
It is of considerable importance to develop chemiluminescent functionalized nanomaterials (CF-NMs) with good catalytic activity, high chemiluminescence (CL) efficiency and good stability, and rapid magnetic separation capability, achieving excellent performance in CL biosensing. In this study, N-(4-aminobutyl)-N-ethylisoluminol (ABEI)-functionalized CuFe2O4 magnetic nanomaterial (ABEI/CuFe2O4) with high catalytic activity was synthesized by virtue of a solvothermal and post-functionalization method. ABEI/CuFe2O4 showed outstanding CL properties, superior to ABEI-CuFe2O4 in liquid phase. This reveals that the immobilization of ABEI on the surface of CuFe2O4 exhibits unique heterogeneous catalytic property. The catalytic ability of CuFe2O4 was better than that of CoFe2O4, ZnFe2O4, MnFe2O4, and NiFe2O4. It is suggested that the peroxide-like activity as well as Cu2+ and Cu0 enriched on the surface of ABEI/CuFe2O4 opened up a dual route for synergistic catalysis of H2O2. ABEI/CuFe2O4 also demonstrated good superparamagnetism and magnetic separation could be carried out in 2 min, which is advantageous for the separation and purification of ABEI/CuFe2O4 during the synthetic procedures and bioassays. Owing to the sensitive response of ABEI/CuFe2O4 to H2O2, an enzyme-free sensor was developed for the detection of H2O2 with a wide linear range over 5 orders of magnitude of H2O2 concentrations and a low detection limit of 5.6 nM. The as-developed sensor is sensitive, stable, and convenient. This work provides a new family member of nanomaterials with good magnetism and CL activity as well as good stability. The developed ABEI/CuFe2O4 shows great prospects in biocatalysis, bioassays, biosensing, and bioimaging, etc.
Collapse
Affiliation(s)
- Yuyang Wu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Jue Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
9
|
Lyu A, Jin T, Wang S, Huang X, Zeng W, Yang R, Cui H. Automatic label-free immunoassay with high sensitivity for rapid detection of SARS-CoV-2 nucleocapsid protein based on chemiluminescent magnetic beads. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 349:130739. [PMID: 34611381 PMCID: PMC8481120 DOI: 10.1016/j.snb.2021.130739] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 05/26/2023]
Abstract
Accurate and efficient early diagnosis is crucial for the control of COVID-19 pandemic. However, methods that can balance sensitivity, high throughput, detection speed and automation simultaneously are still scarce. Here, we report an automatic label-free chemiluminescence immunoassay (CLIA) for rapid SARS-CoV-2 nucleocapsid protein (NP) detection with high sensitivity and throughput. N-(4-aminobutyl)-N-ethylisoluminol and Co2+ dual-functionalized chemiluminescent magnetic beads (dfCL-MB) were first applied to the detection of protein by a novel and simple strategy. Sulphydryl polyethylene glycol was coated on the surface of dfCL-MB so as to assemble dfCL-MB and antibody conjugated gold nanoparticles through Au-S bond. Considering the high-risk application scenarios, the immunosensor was integrated with an automatic chemiluminescence analyzer so that the whole testing procedure could be carried out automatically without manual operation. A linear correlation between CL intensities and the logarithm of NP concentration was obtained in the range of 0.1-10,000 pg/mL with a detection limit of 21 fg/mL. The whole process cost 25 min and the sample compartment can bear 24 samples simultaneously. The spiked human serum samples and serum samples from COVID-19 patients were determined with satisfactory recoveries of 91.1-109.4%, suggesting that the proposed label-free CLIA is of great potential for SARS-CoV-2 NP detection in practice.
Collapse
Affiliation(s)
- Aihua Lyu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tengchuan Jin
- Laboratory of structural immunology, CAS Key Laboratory of innate immunity and chronic diseases, CAS Center for Excellence in Molecular Cell Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Shanshan Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiaoxue Huang
- Laboratory of structural immunology, CAS Key Laboratory of innate immunity and chronic diseases, CAS Center for Excellence in Molecular Cell Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Weihong Zeng
- Laboratory of structural immunology, CAS Key Laboratory of innate immunity and chronic diseases, CAS Center for Excellence in Molecular Cell Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Rui Yang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
10
|
Wang S, Shu J, Lyu A, Huang X, Zeng W, Jin T, Cui H. Label-Free Immunoassay for Sensitive and Rapid Detection of the SARS-CoV-2 Antigen Based on Functionalized Magnetic Nanobeads with Chemiluminescence and Immunoactivity. Anal Chem 2021; 93:14238-14246. [PMID: 34636246 PMCID: PMC8524964 DOI: 10.1021/acs.analchem.1c03208] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Direct detection of SARS-CoV-2 in biological specimens is often challenging due to the low abundance of viral components and lack of enough sensitivity. Herein, we developed a new type of chemiluminescent functionalized magnetic nanomaterial for sensitive detection of the SARS-CoV-2 antigen. First, HAuCl4 was reduced by N-(aminobutyl)-N-(ethylisoluminol) (ABEI) in the presence of amino magnetic beads (MB-NH2) to generate ABEI-AuNPs, which were directly assembled on the surface of MB-NH2. Then, Co2+ was modified onto the surface to form MB@ABEI-Au/Co2+ (MAA/Co2+). MAA/Co2+ exhibited good chemiluminescence (CL) and magnetic properties. It was also found that it was easy for the antibody to be connected with MAA/Co2+. Accordingly, MAA/Co2+ was used as a sensing interface to construct a label-free immunoassay for rapid detection of the N protein in SARS-CoV-2. The immunoassay showed a linear range from 0.1 pg/mL to 10 ng/mL and a low detection limit of 69 fg/mL, which was superior to previously reported methods for N protein detection. It also demonstrated good selectivity by virtue of magnetic separation, which effectively removed a sample matrix after immunoreactions. It was successfully applied for the detection of the N protein in spiked human serum and saliva samples. Furthermore, the immunoassay was integrated with an automatic CL analyzer with magnetic separation to detect the N protein in patient serums and rehabilitation patient serums with satisfactory results. Thus, the CL immunoassay without a complicated labeling procedure is sensitive, selective, fast, simple, and cost-effective, which may be used to combat the COVID-19 pandemic. Finally, the CL quenching mechanism of the N protein in the immunoassay was also explored.
Collapse
Affiliation(s)
- Shanshan Wang
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiangnan Shu
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Aihua Lyu
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaoxue Huang
- Laboratory
of structural immunology, CAS Key Laboratory of innate immunity and
chronic diseases, CAS Center for Excellence in Molecular Cell Science,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Weihong Zeng
- Laboratory
of structural immunology, CAS Key Laboratory of innate immunity and
chronic diseases, CAS Center for Excellence in Molecular Cell Science,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Tengchuan Jin
- Laboratory
of structural immunology, CAS Key Laboratory of innate immunity and
chronic diseases, CAS Center for Excellence in Molecular Cell Science,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Hua Cui
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
11
|
Hu L, Hu X, Huang T, Wang M, Xu G. Chemiluminescence of the Ce(IV)/CDP-Star System Based on the Phosphatase-like Activity of Ce(IV) Ions. ACS OMEGA 2021; 6:6379-6384. [PMID: 33718728 PMCID: PMC7948432 DOI: 10.1021/acsomega.0c06301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The phosphatase-like activity of Ce(IV) ions was applied for chemiluminescence (CL) analysis for the first time. Ce(IV) can catalyze the hydrolysis of CDP-star, which is a phosphatase substrate, to produce strong CL emission. The CL performance of the Ce(IV)/CDP-star system can be significantly improved by the addition of ionic liquids. In the presence of 1-butyl-3-methylimidazolium tetrafluoroborate, the selective and sensitive CL detection of Ce(IV) ions was achieved with a detection limit of 460 nM. The proposed CL system was also used for the detection of ascorbic acid and ClO-. It is based on the phenomenon that Ce(IV) can catalyze the hydrolysis of CDP-star, while Ce(III) cannot. The introduction of reductive ascorbic acid into the mixture of Ce(IV)/CDP-star can turn off the CL signal, while the addition of oxidative ClO- into the solution of Ce(III)/CDP-star can turn on the CL emission. Finally, Ce(IV)/CDP-star CL was successfully applied for evaluating the total antioxidant capacity in commercial fruit juice samples.
Collapse
Affiliation(s)
- Lianzhe Hu
- Chongqing
Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xilu Hu
- Chongqing
Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Ting Huang
- School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Wang
- School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Guobao Xu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
12
|
Wang R, Yue N, Fan A. Nanomaterial-enhanced chemiluminescence reactions and their applications. Analyst 2020; 145:7488-7510. [PMID: 33030463 DOI: 10.1039/d0an01300e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemiluminescence (CL) analysis is a trace analytical method that possesses advantages including high sensitivity, wide linear range, easy operation, and simple instruments. With the development of nanotechnology, many nanomaterial (NM)-enhanced CL systems have been established in recent years and applied for the CL detection of metal ions, anions, small molecules, tumor markers, sequence-specific DNA, and RNA. This review summarizes the research progress of the nanomaterial-enhanced CL systems the past five years. These CL reactions include luminol, peroxyoxalate, lucigenin, ultraweak CL reactions, and so on. The CL mechanisms of the nanomaterial-enhanced CL systems are discussed in the first section. Nanomaterials take part in the CL reactions as the catalyst, CL emitter, energy acceptor, and reductant. Their applications are summarized in the second section. Finally, the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Ruyuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | | | | |
Collapse
|
13
|
Gu L, Zou Y, Li Y, Zeng K, Zhu N, Zhu F, Gyimah E, Yakubu S, Meng H, Zhang Z. High-throughput chemiluminescence immunoassay based on Co 2+/hemin synergistic catalysis for sensitive detection tetrabromobisphenol A bis(2-hydroxyethyl) ether in the environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136880. [PMID: 32018994 DOI: 10.1016/j.scitotenv.2020.136880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Here, a novel chemiluminescence (CL) immunoassay was fabricated for sensitive determination of tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE), one of typical tetrabromobisphenol A derivatives. At the indirectly competitive method, the synthesized PS@hemin@Co2+ was labelled by secondary antibody (Ab2) instead of common natural enzymes, which showed excellent catalysis towards the decomposition of luminol-H2O2 for producing CL signal. Furthermore, the CL signal was greatly amplified owing to the synergistic catalysis of hemin and Co2+ in the detection system. Under the optimized conditions, the established method offered (i) low detection limit (LOD, 0.9 μg/L), which was almost 5 times lower than that using a conventional ELISA with the same antibody; (ii) a good linearity (1.6-14.3 μg/L); (iii) satisfactory accuracy and precision (recoveries, 89.67-125.33%; CV, 2.75-8.37%). The proposed CL immunoassay was applied for analysis of environmental samples from various sources collected from Jiangsu and Zhejiang province, China. And the detected concentrations were ranged in 2.4-3.7 μg/L in environmental waters and 1.8-2.4 ng/g (dry weight, dw) in soil samples, indicating great potential for trace TBBPA-DHEE detection from environmental samples.
Collapse
Affiliation(s)
- Lantian Gu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanmin Zou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yanshen Li
- College of life Science, Yantai University, Yantai 264000, China
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Eric Gyimah
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Meng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Ding L, Wu Y, Duan Y, Yu S, Yu F, Wang J, Tian Y, Gao Z, Wan Z, He L. A Novel Cell-Assisted Enhanced Chemiluminescence Strategy for Rapid and Label-Free Detection of Tumor Cells in Whole Blood. ACS Sens 2020; 5:440-446. [PMID: 31910612 DOI: 10.1021/acssensors.9b02140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, an interesting phenomenon was found where cells (including tumor and normal cells) managed to significantly enhance chemiluminescence (CL) signals. The possible reaction mechanism may be that cells can be severely damaged by CL substrates, and the released contents, possibly proteins (such as cytochrome c), can remarkably magnify CL owing to the increased production of singlet oxygen. More importantly, based on the above phenomena, a novel cell-assisted enhanced CL strategy was proposed for the rapid and label-free detection of tumor cells. The complexes of aptamer sgc8c and streptavidin-modified magnetic beads were employed to recognize and isolate target tumor cells from whole blood. The enhanced CL intensity, which was triggered directly by the captured cells, was measured. The proposed strategy exhibited a good detection performance with a linear range from 200 to 10,000 cells/mL. The analysis can be finished in ∼30 min, and the limit of detection was down to 100 cells/mL. The recoveries and relative standard deviations were 97.81-102.71% and 3.46-12.71%, respectively. Moreover, the established method can successfully distinguish the leukemia patients from healthy people. Therefore, it provides a novel, rapid, and simple method for the determination of tumor cells, which can be used in further practice.
Collapse
Affiliation(s)
- Lihua Ding
- College of Public Health, The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjuan Duan
- College of Public Health, The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Yu
- College of Public Health, The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| | - Jia Wang
- College of Public Health, The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| | - Yongmei Tian
- College of Public Health, The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| | - Zibo Gao
- College of Public Health, The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Wan
- College of Public Health, The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| | - Leiliang He
- College of Public Health, The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Tian X, Liao H, Wang M, Feng L, Fu W, Hu L. Highly sensitive chemiluminescent sensing of intracellular Al 3+ based on the phosphatase mimetic activity of cerium oxide nanoparticles. Biosens Bioelectron 2020; 152:112027. [PMID: 32056738 DOI: 10.1016/j.bios.2020.112027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Nanomaterials with enzyme-like characteristics (also called nanozymes) have attracted increasing attention in the area of analytical chemistry. Nevertheless, most of the nanozymes used for analytical applications are oxidoreductase mimics, and their enzyme-like activities are usually demonstrated by using chromogenic and/or fluorogenic substrates. Herein, the phosphatase mimetic activity of cerium oxide nanoparticles (nanoceria) was investigated by using CDP-star as the chemiluminescent (CL) substrate. Interestingly, we found that the phosphatase mimetic activity of nanoceria can be remarkably inhibited by the addition of Al3+. Based on this finding, a highly sensitive and selective CL method for Al3+ detection is proposed. The CL intensity of the nanoceria/CDP-star system decreased with the increasing Al3+ concentrations in the range from 30 nM to 3.5 μM. A detection limit as low as 10 nM was obtained. Finally, the CL detection of intracellular Al3+ was achieved, demonstrating the utility of the CL method in complex biological samples.
Collapse
Affiliation(s)
- Xue Tian
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Hong Liao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
16
|
Liu R, Li Z, Huang Z, Li K, Lv Y. Biosensors for explosives: State of art and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Liu Y, Shen W, Cui H. Combined Transition-Metal/Enzyme Dual Catalytic System for Highly Intensive Glow-Type Chemiluminescence-Functionalized CaCO3 Microspheres. Anal Chem 2019; 91:10614-10621. [DOI: 10.1021/acs.analchem.9b01774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yating Liu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wen Shen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
18
|
Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron 2019; 137:178-198. [DOI: 10.1016/j.bios.2019.04.061] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
19
|
Kong W, Li Q, Wang W, Zhao X, Jiang S, Zheng T, Zhang Q, Shen W, Cui H. Rational design of functional materials guided by single particle chemiluminescence imaging. Chem Sci 2019; 10:5444-5451. [PMID: 31293726 PMCID: PMC6553381 DOI: 10.1039/c9sc00954j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Chemiluminescence (CL) functionalized materials have found tremendous value in developing CL assays for clinical assays and point-of-care tests. To date, the design and optimization of these materials have mainly relied on conventional trial-and-error procedures in which the ensemble performance is evaluated using conditional experiments. Here we have built an optical microscope to acquire the CL emission from single magnetic-polymer hybrid microbeads functionalized with luminol analogues, and to access the CL kinetics of each individual particle. It was incidentally found that a minor subpopulation of microbeads exhibited intense and delayed CL emission while the majority showed transient and weak emission. Structural characterization of the very same individual particles uncovered that the amorphous multi-core microstructures were responsible for the enhanced encapsulation efficiency and optimized CL reaction kinetics. Guided by this knowledge stemming from single particle CL imaging, the synthesis procedure was rationally optimized to enrich the portion of microbeads with better CL performance, which was validated by both single particle imaging and the significantly improved analytical performance at the ensemble level. The present work not only demonstrates the CL imaging and CL kinetics curve of single microbeads for the first time, but also sets a clear example showing the capability of single particle studies to investigate the structure-activity relationship in a bottom-up manner and to help the rational design of ensemble materials with improved performance.
Collapse
Affiliation(s)
- Weijun Kong
- Department of Chemistry , CAS Key Laboratory of Soft Matter Chemistry , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| | - Qi Li
- Department of Chemistry , CAS Key Laboratory of Soft Matter Chemistry , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China .
| | - Xiaoning Zhao
- Beijing Institute of Metrology , Room 303, No. 10 Lishuiqiaojia, Chaoyang District , Beijing , 102200 , P. R. China
| | - Shenglong Jiang
- Hefei National Laboratory for Physical Science at the Microscale , iChEM , Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Tianhua Zheng
- Department of Chemistry , CAS Key Laboratory of Soft Matter Chemistry , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| | - Qun Zhang
- Hefei National Laboratory for Physical Science at the Microscale , iChEM , Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Wen Shen
- Department of Chemistry , CAS Key Laboratory of Soft Matter Chemistry , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| | - Hua Cui
- Department of Chemistry , CAS Key Laboratory of Soft Matter Chemistry , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| |
Collapse
|
20
|
|
21
|
Lan Y, Yuan F, Fereja TH, Wang C, Lou B, Li J, Xu G. Chemiluminescence of Lucigenin/Riboflavin and Its Application for Selective and Sensitive Dopamine Detection. Anal Chem 2018; 91:2135-2139. [DOI: 10.1021/acs.analchem.8b04670] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yixiang Lan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Fan Yuan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230022, China
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of the Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, China
| | - Chao Wang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230022, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Guobao Xu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230022, China
| |
Collapse
|
22
|
N-(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination. Biosens Bioelectron 2018; 121:250-256. [DOI: 10.1016/j.bios.2018.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022]
|
23
|
Hu J, Wang C, Liu R, Su Y, Lv Y. Poly(thymine)-CuNPs: Bimodal Methodology for Accurate and Selective Detection of TNT at Sub-PPT Levels. Anal Chem 2018; 90:14469-14474. [PMID: 30458612 DOI: 10.1021/acs.analchem.8b04161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate, sensitive, and selective detection of explosives is of vital importance in antiterrorism and homeland security. Fluorescence sensors are prevalent for sensitive and fast in-field explosive detection but are sometimes compromised by accuracy and stability due to the similar structures of explosives, photobleaching, and complex sample matrixes. Herein, we developed a first bimodal methodology capable of both sensitive in-field fluorescence detection and accurate laboratory mass spectrometric quantification of 2,4,6-trinitrotoluene (TNT) by utilizing the characteristic fluorescent and mass spectrometric response of copper nanoparticles (CuNPs). An excellent selectivity was also realized by involving aptamer recognition. The methodology is capable of detecting TNT at subpart per trillion (PPT) levels, with a detection limit of 0.32 pg mL-1 by inductively coupled plasma mass spectrometry (ICPMS) and 0.17 ng mL-1 by fluorimetry. The signal response was accurate and stable for at least 60 days by ICPMS. Thanks to the biospecificity of the aptamer, this bimodal methodology is potentially applicable to a large panel of explosives.
Collapse
Affiliation(s)
- Jianyu Hu
- College of Architecture & Environment , Sichuan University , Chengdu 610064 , China
| | - Chaoqun Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Yingying Su
- Analytical & Testing Center , Sichuan University , Chengdu 610064 , China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China.,Analytical & Testing Center , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
24
|
Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources. Molecules 2018; 23:molecules23020344. [PMID: 29414854 PMCID: PMC6017897 DOI: 10.3390/molecules23020344] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX). Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.
Collapse
|