1
|
Thurman HA, Gusachenko E, Anderson GA, Shvartsburg AA. Superior Differential Ion Mobility Spectrometry of Pendular Macromolecules Using Low-Frequency Rectangular Waveforms. Anal Chem 2025. [PMID: 40228027 DOI: 10.1021/acs.analchem.4c06841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Ion mobility spectrometry (IMS) can delineate gas-phase ions and probe their geometries. Coupling with electrospray ionization and MS has brought IMS to structural biology, revealing the macromolecular folding and subunit connectivity. However, the orientational averaging of ion-molecule collision cross sections (Ω) in the linear and field asymmetric waveform IMS (FAIMS) diminishes the resolution and structural specificity. In the novel low-field differential (LOD) IMS, a field too weak for ion heating (and thus FAIMS) aligns strong macrodipoles, capturing their magnitudes and directional Ω across the dipole (Ω⊥). However, the bisinusoidal waveforms (from FAIMS) have compromised the resolution, measurement accuracy, and correlation to the ion properties. Large ions amenable to LODIMS have low mobility and diffuse slowly, allowing the waveform frequencies down to ∼10 kHz. The low field and frequency permit generating the ideal rectangular waveforms with a flexible frequency and duty cycle by direct switching (impractical for FAIMS) in a miniature low-power format. This new IMS stage is evaluated for the exemplary large protein albumin (66 kDa) previously studied using the bisinusoidal waveform. The flat voltages and greater form factor initiate the differential IMS effect at lower fields, expand the separation space, and enable the quantification of Ω⊥ values by varying the duty cycle.
Collapse
Affiliation(s)
- Hayden A Thurman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Egor Gusachenko
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Gordon A Anderson
- GAACE, 101904 Wiser Parkway Ste 105, Kennewick, Washington 99338, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
2
|
Fu S, Wang C, Li J, Yu J, Tang K. Simulation study of a new racetrack FAIMS analyzer to achieve both high-resolution and high-sensitivity. Talanta 2024; 276:126305. [PMID: 38788385 DOI: 10.1016/j.talanta.2024.126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
A new racetrack field-asymmetric waveform ion mobility spectrometry (r-FAIMS) analyzer was developed in this study by combining the existing planar FAIMS (p-FAIMS) and cylindrical FAIMS (c-FAIMS). The ion inlet and outlet regions of r-FAIMS were consisted of a half of c-FAIMS, respectively, and these c-FAIMS were further connected by two p-FAIMS to form a racetrack shaped FAIMS. With such FAIMS working electrode configuration, the ions entering the r-FAIMS can be focused and separated in the first c-FAIMS section, be further separated in the p-FAIMS section with high-resolution, be focused and separated again in the final c-FAIMS section and eventually enter the mass spectrometer or other analyzers for analysis. Detailed simulation by using SIMION software with the default FAIMS user program showed that the ion focusing effect in the first c-FAIMS section ensures the ions entering the following p-FAIMS section as a compact ion packet. This effectively decreases the ion loss caused by Coulomb repulsion and thermal diffusion in p-FAIMS section as compared to the ions being introduced into the p-FAIMS gap randomly in the conventional design. As a result, the ion transmission efficiency of r-FAIMS is at least 3.3-fold higher than the single p-FAIMS under the operating conditions used in this study. The ion trajectory simulation results also showed that the resolving power of r-FAIMS is about the sum of the resolving powers for its c-FAIMS and p-FAIMS sections. The resolving power of r-FAIMS is at least 3.6-fold higher than the single c-FAIMS under the operation conditions used in this study. Therefore, the r-FAIMS can realize both high-resolution and high-sensitive ion mobility separation.
Collapse
Affiliation(s)
- Shoushuai Fu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Chenlu Wang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
3
|
Abdulbagi M, Di B, Li B. Resolving D-Amino Acid Containing Peptides Using Ion Mobility-Mass Spectrometry: Challenges and Recent Developments. Crit Rev Anal Chem 2023; 55:306-315. [PMID: 37975700 DOI: 10.1080/10408347.2023.2282510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Peptides and proteins having D-amino acids in their sequences are now believed to be widespread among different living organisms. Their significance is attributed to the diverse functions of these molecules, such as having a certain pathological implication or enhancing biological activity. Indeed, some peptide molecules with D-amino acids in their structure have already found their way to clinical use such as the antibacterial gramicidin and the antidiabetic nateglinide. Ion mobility mass spectrometry (IM-MS) added an additional dimension of separation as it depends on ions mobility in the space, which is dependent on their shapes, and the shape depends on the orientation of atoms. Thus, D-amino acids containing peptides (DAACPs) will have different mobility and collision cross-section values than those with L-amino acids. Eventually, this will lead to baseline separation of the two peptides. Additionally, ion mobility can precisely locate the position of D-amino acids by analyzing the difference in the arrival times of the fragment ions. The importance of DAACPs, as well as the difficulties in discovering them, were addressed in this review. Similarly, we emphasized how recent developments in IM-MS have improved their detection and analysis. Consequently, the LC-IM-MS/MS platform appears to be promising in isomeric mixture analysis.
Collapse
Affiliation(s)
- Mohamed Abdulbagi
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing, China
| | - Bin Di
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Bo Li
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Girard MFC, Knight P, Hopfgartner G. Vacuum differential mobility spectrometry combined with column-switching liquid chromatography- mass spectrometry for the analysis of pyrrolizidine alkaloids in tea samples. J Chromatogr A 2023; 1705:464174. [PMID: 37348223 DOI: 10.1016/j.chroma.2023.464174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
The benefit of combining liquid chromatography (LC), supercritical fluid chromatography (SFC) and vacuum Differential Mobility Spectrometry - Mass Spectrometry (vDMS-MS) was investigated for the analysis of fourteen diastereomeric pyrrolizidine alkaloids (PA); intermedine, echinatine, lycopsamine, indicine, intermedine-N-oxide, echinatine-N-oxide, indicine-N-oxide, lycopsamine-N-oxide, senecivernine, senecionine, jacobine, senecivernine-N-oxide, senecionine-N-oxide, retrorsine. The mobile phase composition (15-100% MeOH and ACN), flow rate (8-100 µL/min), vDMS cell pressure, and F value showed an effect on the mobility behavior of the analytes. At 15% MeOH with a flow rate of 100 µL/min and 33 mbar vDMS pressure, 8 out 14 PA could be partially or totally separated by vDMS-MS. As well as providing an additional separation dimension vDMS improved the selectivity and a 5-minute assay method was developed for the quantification of 10 out of 14 single diastereomeric PA in tea samples, using a short LC column-switching and hyphenated to vDMS-MS in the selected ion monitoring mode. The performance of the method was found to be comparable with a 12-minute standard LC-MS/MS method using detection in the selected reaction monitoring mode. Additionally, the combination of vDMS and SFC-MS was investigated and suggests that the mixture of CO2/MeOH influences the CV shifting of the PA to more negative compensation voltage, and the signal-to-noise ratio is improved by a factor of three compared to SFC-MS without vDMS.
Collapse
Affiliation(s)
- Maria Fernanda Cifuentes Girard
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Patrick Knight
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, UK
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
5
|
Li J, Liu R, Gao W, Yu J, Tang K. Ion storage biases in the ion funnel trap of a Hybrid ion mobility spectrometer/time of flight mass spectrometer. Talanta 2023; 260:124621. [PMID: 37149942 DOI: 10.1016/j.talanta.2023.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
A detailed experimental characterization on the ion storage biases in an ion funnel trap, related to ion structure, charge state and RF voltage applied to the ion funnel trap, is reported by using both cytochrome C and ubiquitin samples. It was first observed experimentally that an unavoidable ion overflow would occur when the incoming ions exceeded the capacity of ion funnel trap. The conformers with extended structures would lose preferentially in the ion overflow process. Accordingly, a significant structural bias in the ion mobility spectrometry/time of flight mass spectrometry (IMS-TOF MS) spectrum was created, as the peak intensities for conformers with compact structures and extended structures would continuously increase and decrease, respectively, when the ion overflow time of the ion funnel trap was increased. Furthermore, the experimental results also showed that the effect of this ion structural bias was more significant when the RF voltage applied to the ion funnel trap was increased. In addition, an ion charge state bias in the ion funnel trap was also observed. The effect of the ion structural bias depends significantly on the specific charge state of the ions. For a given analyte, its lower charge state ions show a greater sensitivity to the ion structural bias than the higher charge state ones under the same ion funnel trap operating conditions. Therefore, it is extremely important to set a reasonable operation condition for the ion funnel trap to avoid ion storage biases in IMS-TOF MS.
Collapse
Affiliation(s)
- Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Rong Liu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Wenqing Gao
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
6
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Effects of the LC mobile phase in vacuum differential mobility spectrometry-mass spectrometry for the selective analysis of antidepressant drugs in human plasma. Anal Bioanal Chem 2022; 414:7243-7252. [PMID: 35976423 PMCID: PMC9482904 DOI: 10.1007/s00216-022-04276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The effect of LC mobile phase composition and flow rate (2–50 µL/min) on mobility behavior in vacuum differential mobility spectrometry (vDMS) was investigated for electrosprayed isobaric antidepressant drugs (AD); amitriptyline, maprotiline, venlafaxine; and structurally related antidepressants nortriptyline, imipramine, and desipramine. While at 2 µL/min, no difference in compensation voltage was observed with methanol and acetonitrile, at 50 µL/min, acetonitrile used for LC elution of analytes enabled the selectivity of the mobility separation to be improved. An accurate and sensitive method could be developed for the quantification of six AD drugs in human plasma using trap/elute micro-LC setup hyphenated to vDMS with mass spectrometric detection in the selected ion monitoring mode. The assay was found to be linear over three orders of magnitude, and the limit of quantification was of 25 ng/mL for all analytes. The LC-vDMS-SIM/MS method was compared to a LC-MRM/MS method, and in both cases, inter-assay precisions were lower than 12.5 and accuracies were in the range 91.5–110%, but with a four times reduced analysis time (2 min) for the LC-vDMS-SIM/MS method. This work illustrates that with vDMS, the LC mobile phase composition can be used to tune the ion mobility separation and to improve assay selectivity without additional hardware.
Collapse
|
8
|
Andrzejewski R, Entwistle A, Giles R, Shvartsburg AA. Ion Mobility Spectrometry of Superheated Macromolecules at Electric Fields up to 500 Td. Anal Chem 2021; 93:12049-12058. [PMID: 34423987 DOI: 10.1021/acs.analchem.1c02299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its inception in 1980s, differential or field asymmetric waveform ion mobility spectrometry (FAIMS) has been implemented at or near ambient gas pressure. We recently developed FAIMS at 15-30 Torr with mass spectrometry and utilized it to analyze amino acids, isomeric peptides, and protein conformers. The separations broadly mirrored those at atmospheric pressure, save for larger proteins that (as predicted) exhibited dipole alignment at ambient but not low pressure. Here we reduce the pressure down to 4.7 Torr, allowing normalized electric fields up to 543 Td-double the maximum in prior FAIMS or IMS studies of polyatomic ions. Despite the collisional heating to ∼1000 °C at the waveform peaks, the proteins of size from ubiquitin to albumin survived intact. The dissociation of macromolecules in FAIMS appears governed by the average ion temperature over the waveform cycle, unlike the isomerization controlled by the peak temperature. The global separation trends in this "superhot" regime extend those at moderately low pressures, with distinct conformers and no alignment as theorized. Although the scaling of the compensation voltage with the field fell below cubic at lower fields, the resolving power increased and the resolution of different proteins or charge states substantially improved.
Collapse
Affiliation(s)
- Roch Andrzejewski
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Andrew Entwistle
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Roger Giles
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
9
|
Li Y, Jiang D, Zhao K, Li E, Liu Y, Chen C, Wang W, Li H. Real-time continuous measurement of intraoperative trace exhaled propofol by planar differential mobility spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2624-2630. [PMID: 34032237 DOI: 10.1039/d1ay00179e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to study anesthetic pharmacokinetics and adequately adjust the anaesthesia depth of patients, real-time measurement of the intraoperative exhaled propofol concentration is of significant importance for anaesthetists. Although a series of analytical techniques and methods have been developed for the detection of exhaled propofol, differential mobility spectrometry (DMS) with the advantages of a much smaller instrument, faster response time and cheaper cost shows great potential for the point of care in the operating room. In this paper, a planar DMS was constructed for real-time continuous measurement of trace propofol in exhaled air. The effects of DMS parameters, such as the radio frequency voltage, the drift gas flow rate and the sampling flow rate of exhaled air on the propofol measurement under high humidity conditions were carefully investigated and discussed. Under the optimum experimental conditions, the limit of detection (LOD) for propofol was achieved in ppbv with a linear range of 0.5 to 25 ppbv, both of which meet clinical requirements. Finally, the planar DMS was performed on a patient undergoing thyroidectomy surgery to real-time monitor the intraoperative exhaled propofol, which demonstrated the capability of DMS for sensitive and breath-by-breath continuous measurement of intraoperative trace exhaled propofol.
Collapse
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pathak P, Shvartsburg AA. Low-Field Differential Ion Mobility Spectrometry of Dipole-Aligned Macromolecules. Anal Chem 2020; 92:13855-13863. [DOI: 10.1021/acs.analchem.0c02551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pratima Pathak
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
11
|
Pathak P, Baird MA, Shvartsburg AA. Structurally Informative Isotopic Shifts in Ion Mobility Spectra for Heavier Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:137-145. [PMID: 32881519 DOI: 10.1021/jasms.9b00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The isotopic molecular envelopes due to stable isotopes for most elements were a staple of mass spectrometry since its origins, often leveraged to identify and quantify compounds. However, all isomers share one MS envelope. As the molecular motion in media also depends on the isotopic composition, separations such as liquid chromatography (LC) and ion mobility spectrometry (IMS) must also feature isotopic envelopes. These were largely not observed because of limited resolution, except for the (structurally uninformative) shifts in LC upon H/D exchange. We recently found the isotopic shifts in FAIMS for small haloanilines (∼130-170 Da) to hinge on the halogen position, opening a novel route to isomer characterization. Here, we extend the capability to heavier species: dibromoanilines (DBAs, ∼250 Da) and tribromoanilines (TBAs, ∼330 Da). The 13C shifts for DBAs and TBAs vary across isomers, some changing sign. While 81Br shifts are less specific, the 2-D 13C/81Br shifts unequivocally differentiate all isomers. The trends for DBAs track those for dichloroanilines, with the 13C shift order preserved for most isomers. The peak broadening due to merged isotopomers is also isomer-specific. The absolute shifts for TBAs are smaller than those for lighter haloanilines, but differentiate isomers as well because of compressed uncertainties. These results showcase the feasibility of broadly distinguishing isomers in the more topical ∼200-300 Da range using the isotopic shifts in IMS spectra.
Collapse
Affiliation(s)
- Pratima Pathak
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Matthew A Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
12
|
Winter DL, Mastellone J, Kabir KMM, Wilkins MR, Donald WA. Separation of Isobaric Mono- and Dimethylated RGG-Repeat Peptides by Differential Ion Mobility-Mass Spectrometry. Anal Chem 2019; 91:11827-11833. [DOI: 10.1021/acs.analchem.9b02504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel L. Winter
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jordan Mastellone
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - K. M. Mohibul Kabir
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marc R. Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
13
|
Shvartsburg AA, Andrzejewski R, Entwistle A, Giles R. Ion Mobility Spectrometry of Macromolecules with Dipole Alignment Switchable by Varying the Gas Pressure. Anal Chem 2019; 91:8176-8183. [DOI: 10.1021/acs.analchem.9b00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Roch Andrzejewski
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Andrew Entwistle
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Roger Giles
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| |
Collapse
|
14
|
Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JL, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano ID, Causon T, Clowers BH, Creaser CS, De Pauw E, Far J, Fernandez‐Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T. Recommendations for reporting ion mobility Mass Spectrometry measurements. MASS SPECTROMETRY REVIEWS 2019; 38:291-320. [PMID: 30707468 PMCID: PMC6618043 DOI: 10.1002/mas.21585] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 05/02/2023]
Abstract
Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site2 rue Robert Escarpit, 33600PessacFrance
| | | | | | - Perdita Barran
- Michael Barber Centre for Collaborative Mass SpectrometryManchester Institute for Biotechnology, University of ManchesterManchesterUK
| | - Justin L.P. Benesch
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford, Mansfield Road, OX1 3TAOxfordUK
| | - Christian Bleiholder
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida32311
| | | | - Aivett Bilbao
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashington
| | - Matthew F. Bush
- Department of ChemistryUniversity of WashingtonSeattleWashington
| | | | | | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Brian H. Clowers
- Department of ChemistryWashington State UniversityPullmanWashington
| | - Colin S. Creaser
- Centre for Analytical ScienceDepartment of Chemistry, Loughborough UniversityLoughboroughUK
| | - Edwin De Pauw
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | - Johann Far
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | | | | | | | - Michael Groessl
- Department of Nephrology and Hypertension and Department of BioMedical ResearchInselspital, Bern University Hospital, University of Bern, Switzerland and TofwerkThunSwitzerland
| | | | - Stephan Hann
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Hugh I. Kim
- Department of ChemistryKorea UniversitySeoulKorea
| | | | - Jody C. May
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - John A. McLean
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - Kevin Pagel
- Freie Universitaet BerlinInstitute for Chemistry and BiochemistryBerlinGermany
| | | | | | - Frédéric Rosu
- CNRS, INSERM and University of BordeauxInstitut Européen de Chimie et BiologiePessacFrance
| | - Frank Sobott
- Antwerp UniversityBiomolecular & Analytical Mass SpectrometryAntwerpBelgium
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonWC1E 6BTUK
- United Kingdom and Institute of Structural and Molecular BiologyDepartment of Biological Sciences, Birkbeck College, University of LondonLondonWC1E 7HXUK
| | - Stephen J. Valentine
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest Virginia
| | | |
Collapse
|
15
|
Kirk AT, Bohnhorst A, Raddatz CR, Allers M, Zimmermann S. Ultra-high-resolution ion mobility spectrometry-current instrumentation, limitations, and future developments. Anal Bioanal Chem 2019; 411:6229-6246. [PMID: 30957205 DOI: 10.1007/s00216-019-01807-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022]
Abstract
With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving power are explained and compared between the different instruments. This allows understanding the current limitations of resolving power and how ion mobility spectrometers may progress in the future. Graphical abstract.
Collapse
Affiliation(s)
- Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany.
| | - Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Christian-Robert Raddatz
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Maria Allers
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| |
Collapse
|
16
|
Winter DL, Wilkins MR, Donald WA. Differential Ion Mobility–Mass Spectrometry for Detailed Analysis of the Proteome. Trends Biotechnol 2019; 37:198-213. [DOI: 10.1016/j.tibtech.2018.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
|
17
|
Pfammatter S, Bonneil E, McManus FP, Prasad S, Bailey DJ, Belford M, Dunyach JJ, Thibault P. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements. Mol Cell Proteomics 2018; 17:2051-2067. [PMID: 30007914 DOI: 10.1074/mcp.tir118.000862] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/11/2018] [Indexed: 01/17/2023] Open
Abstract
The depth of proteomic analyses is often limited by the overwhelming proportion of confounding background ions that compromise the identification and quantification of low abundance peptides. To alleviate these limitations, we present a new high field asymmetric waveform ion mobility spectrometry (FAIMS) interface that can be coupled to the Orbitrap Tribrid mass spectrometers. The interface provides several advantages over previous generations of FAIMS devices, including ease of operation, robustness, and high ion transmission. Replicate LC-FAIMS-MS/MS analyses (n = 100) of HEK293 protein digests showed stable ion current over extended time periods with uniform peptide identification on more than 10,000 distinct peptides. For complex tryptic digest analyses, the coupling of FAIMS to LC-MS/MS enabled a 30% gain in unique peptide identification compared with non-FAIMS experiments. Improvement in sensitivity facilitated the identification of low abundance peptides, and extended the limit of detection by almost an order of magnitude. The reduction in chimeric MS/MS spectra using FAIMS also improved the precision and the number of quantifiable peptides when using isobaric labeling with tandem mass tag (TMT) 10-plex reagent. We compared quantitative proteomic measurements for LC-MS/MS analyses performed using synchronous precursor selection (SPS) and LC-FAIMS-MS/MS to profile the temporal changes in protein abundance of HEK293 cells following heat shock for periods up to 9 h. FAIMS provided 2.5-fold increase in the number of quantifiable peptides compared with non-FAIMS experiments (30,848 peptides from 2,646 proteins for FAIMS versus 12,400 peptides from 1,229 proteins with SPS). Altogether, the enhancement in ion transmission and duty cycle of the new FAIMS interface extended the depth and comprehensiveness of proteomic analyses and improved the precision of quantitative measurements.
Collapse
Affiliation(s)
- Sibylle Pfammatter
- From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada.,§University of Montréal, Department of Chemistry, H3T 1J4, Québec, Canada
| | - Eric Bonneil
- From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada
| | - Francis P McManus
- From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada
| | - Satendra Prasad
- ¶Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Derek J Bailey
- ¶Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Michael Belford
- ¶Thermo Fisher Scientific, San Jose, California 95134, United States
| | | | - Pierre Thibault
- From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada; .,§University of Montréal, Department of Chemistry, H3T 1J4, Québec, Canada
| |
Collapse
|