1
|
Rudnicki K, Powałka E, Marciniak K, Poltorak L. Ready-to-use polymeric films used as the electrified liquid-liquid interface supports. Talanta 2025; 285:127256. [PMID: 39616752 DOI: 10.1016/j.talanta.2024.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 01/23/2025]
Abstract
In this work, we have tested two commercially available polymeric films: one with natural porosity (polyvinylidene difluoride - PVDF) and the other modified to include micropores (ethylene-vinyl acetate - EVA) created through needle puncturing. Subsequently, these films were successfully employed for the miniaturization of the electrified liquid-liquid interface formed between water and 1,2-dichloroethane solutions. The geometry of the membranes was assessed with confocal microscopy, the aqueous phase wettability was evaluated with a drop-shape analyzer whereas their ability to support the electrified liquid-liquid interfaces was followed with ion transfer voltammetry. Finally, the resulting platforms were applied to the electroanalytical detection of 2-phenylethylamine.
Collapse
Affiliation(s)
- Konrad Rudnicki
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland.
| | - Emilia Powałka
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland
| | - Karolina Marciniak
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland
| | - Lukasz Poltorak
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland
| |
Collapse
|
2
|
Ribeiro JA, Silva AF, Girault HH, Pereira CM. Electroanalytical applications of ITIES - A review. Talanta 2024; 280:126729. [PMID: 39180876 DOI: 10.1016/j.talanta.2024.126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Over the last decades, the interface between two immiscible electrolyte solutions (ITIES) attracted considerable attention of the scientific community due to their vast applications, such as extraction, catalysis, partition studies and sensing. The aim of this Review is to highlight the potential of electrochemistry at the ITIES for analytical purposes, focusing on ITIES-based sensors for detection and quantification of chemically and biologically relevant (bio)molecules. We start by addressing the evolution of ITIES in terms of number of publications over the years along with an overview of their main applications (Chapter 1). Then, we provide a general historical perspective about pioneer voltammetric studies at water/oil systems (Chapter 2). After that, we discuss the most impacting improvements on ITIES sensing systems from both perspectives, set-up design (interface stabilization and miniaturization, selection of the organic solvent, etc.) and optimization of experimental conditions to improve selectivity and sensitivity (Chapter 3). In Chapter 4, we discuss the analytical applications of ITIES for electrochemical sensing of several types of analytes, including drugs, pesticides, proteins, among others. Finally, we highlight the present achievements of ITIES as analytical tool and provide future challenges and perspectives for this technology (Chapter 5).
Collapse
Affiliation(s)
- José A Ribeiro
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| | - A Fernando Silva
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
| | - H H Girault
- Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Carlos M Pereira
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| |
Collapse
|
3
|
Elashnikov R, Khrystonko O, Trelin A, Kuchař M, Švorčík V, Lyutakov O. Label-free SERS-ML detection of cocaine trace in human blood plasma. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134525. [PMID: 38743978 DOI: 10.1016/j.jhazmat.2024.134525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The widespread consumption of cocaine poses a significant threat to modern society. The most effective way to combat this problem is to control the distribution of cocaine, based on its accurate and sensitive detection. Here, we proposed the detection of cocaine in human blood plasma using a combination of surface enhanced Raman spectroscopy and machine learning (SERS-ML). To demonstrate the efficacy of our proposed approach, cocaine was added into blood plasma at various concentrations and drop-deposited onto a specially prepared disposable SERS substrate. SERS substrates were created by deposition of metal nanoclusters on electrospun polymer nanofibers. Subsequently, SERS spectra were measured and as could be expected, the manual distinguishing of cocaine from the spectra proved unfeasible, as its signal was masked by the background signal from blood plasma molecules. To overcome this issue, a database of SERS spectra of cocaine in blood plasma was collected and used for ML training and validation. After training, the reliability of proposed approach was tested on independently prepared samples, with unknown for SERS-ML cocaine presence or absence. As a result, the possibility of rapid determination of cocaine in blood plasma with a probability above 99.5% for cocaine concentrations up to 10-14 M was confirmed. Therefore, it is evident that the proposed approach has the ability to detect trace amounts of cocaine in bioliquids in an express and simple manner.
Collapse
Affiliation(s)
- Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Olena Khrystonko
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Andrii Trelin
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| |
Collapse
|
4
|
Rudnicki K, Budzyńska S, Skrzypek S, Poltorak L. Comparative electrochemical study of veterinary drug danofloxacin at glassy carbon electrode and electrified liquid-liquid interface. Sci Rep 2024; 14:14489. [PMID: 38914687 PMCID: PMC11196252 DOI: 10.1038/s41598-024-65246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
This work compares the electroanalytical performance of two electroanalytical systems based on (1) the glassy carbon electrode (GCE), and (2) the electrified liquid-liquid interface (eLLI), for the detection of fluoroquinolone antibiotic-danofloxacin (DANO). Our aim was to define the optimal conditions to detect the chosen analyte with two employed systems, extract a number of electroanalytical parameters, study the mechanism of the charge transfer reactions (oxidation at GCE and ion transfer across the eLLI), and to provide physicochemical constants for DANO. Detection of the chosen analyte was also performed in the spiked milk samples. To the best of our knowledge, this is the first work that directly compares the electroanalytical parameters obtained with solid electrode (in this case GCE) and eLLI. We have found that for DANO the latter provides better electroanalytical parameters (lower LOD and LOQ) as well as good selectivity when the milk was analyzed.
Collapse
Affiliation(s)
- Konrad Rudnicki
- Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Łódź, Poland.
| | - Sylwia Budzyńska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Sławomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Łódź, Poland
| | - Lukasz Poltorak
- Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Łódź, Poland.
| |
Collapse
|
5
|
Xu Z, You Y, Bai S, Wang L, Liu C. Microliquid/Liquid Interfacial Sensors: Biomimetic Investigation of Transmembrane Mechanisms and Real-Time Determinations of Clemastine, Cyproheptadine, Epinastine, Cetirizine, and Desloratadine. Anal Chem 2024; 96:6599-6608. [PMID: 38640514 DOI: 10.1021/acs.analchem.3c05640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Antihistamines relieve allergic symptoms by inhibiting the action of histamine. Further understanding of antihistamine transmembrane mechanisms and optimizing the selectivity and real-time monitoring capabilities of drug sensors is necessary. In this study, a micrometer liquid/liquid (L/L) interfacial sensor has served as a biomimetic membrane to investigate the mechanism of interfacial transfer of five antihistamines, i.e., clemastine (CLE), cyproheptadine (CYP), epinastine (EPI), desloratadine (DSL), and cetirizine (CET), and realize the real-time determinations. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to uncover the electrochemical transfer behavior of the five antihistamines at the L/L interface. Additionally, finite element simulations (FEMs) have been employed to reveal the thermodynamics and kinetics of the process. Visualization of antihistamine partitioning in two phases at different pH values can be realized by ion partition diagrams (IPDs). The IPDs also reveal the transfer mechanism at the L/L interface and provide effective lipophilicity at different pH values. Real-time determinations of these antihistamines have been achieved through potentiostatic chronoamperometry (I-t), exhibiting good selectivity with the addition of nine common organic or inorganic compounds in living organisms and revealing the potential for in vivo pharmacokinetics. Besides providing a satisfactory surrogate for studying the transmembrane mechanism of antihistamines, this work also sheds light on micro- and nano L/L interfacial sensors for in vivo analysis of pharmacokinetics at a single-cell or single-organelle level.
Collapse
Affiliation(s)
- Zhidan Xu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongtao You
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cheng Liu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Key Laboratory for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
6
|
Balamurugan TST, Stelmaszczyk P, Wietecha-Posłuszny R, Poltorak L. Electroanalytical characterization of clozapine at the electrified liquid-liquid interface and its detection in soft and hard drinks. Analyst 2024; 149:2073-2083. [PMID: 38415352 DOI: 10.1039/d3an02188b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Clozapine (CZ) is a prescribed benzodiazepine psychiatric drug that is often possessed as an illicit drug and is associated with drug-facilitated sexual assaults (DFSA) due to its strong sedative capabilities. Hence, we propose an electrified liquid-liquid interface (eLLI) based transducing element as an alternative electroanalytical platform for rapid screening of CZ in soft and hard drinks which is habitually associated with DFSA crimes. First, molecular partitioning and the effect of chemical composition, pH, and the presence of ethanol in the biphasic configuration of the aqueous phase on the interfacial behaviour and analytical performance of the CZ at the eLLI have been investigated with voltammetry. Next, the electrochemical profiles of various soft and hard drinks were studied at the eLLI. The eLLI-based CZ sensor has shown a broad dynamic range (15-150 μM), lower detection limits (1μM), and adequate reliability towards rapid CZ screening in spiked soft and hard drink samples with reference to the standard chromatographic analysis.
Collapse
Affiliation(s)
- Thangaraj S T Balamurugan
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| | - Paweł Stelmaszczyk
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Lukasz Poltorak
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
7
|
Stelmaszczyk P, Kwaczyński K, Rudnicki K, Skrzypek S, Wietecha-Posłuszny R, Poltorak L. Nitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interface. Mikrochim Acta 2023; 190:182. [PMID: 37052720 PMCID: PMC10101902 DOI: 10.1007/s00604-023-05739-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Two benzodiazepine type drugs, that is, nitrazepam and 7-aminonitrazepam, were studied at the electrified liquid-liquid interface (eLLI). Both drugs are illicit and act sedative in the human body and moreover are used as date rape drugs. Existence of the diazepine ring in the concerned chemicals structure and one additional amine group (for 7-aminonitrazepam) allows for the molecular charging below their pKa values, and hence, both drugs can cross the eLLI interface upon application of the appropriate value of the Galvani potential difference. Chosen molecules were studied at the macroscopic eLLI formed in the four electrode cell and microscopic eLLI formed within a microtip defined as the single pore having 25 μm in diameter. Microscopic eLLI was formed using only a few μL of the organic and the aqueous phase with the help of a 3D printed cell. Parameters such as limit of detection and voltammetric detection sensitivity are derived from the experimental data. Developed methodology was used to detect nitrazepam in pharmaceutical formulation and both drugs (nitrazepam and 7-aminonitrazepam) in spiked biological fluids (urine and blood).
Collapse
Affiliation(s)
- Paweł Stelmaszczyk
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Karolina Kwaczyński
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Konrad Rudnicki
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Sławomira Skrzypek
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Lukasz Poltorak
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
8
|
Nakao K, Noda K, Hashimoto H, Nakagawa M, Nishimi T, Ohira A, Sato Y, Kato D, Kamata T, Niwa O, Kunitake M. Electrochemistry in bicontinuous microemulsions derived from two immiscible electrolyte solutions for a membrane-free redox flow battery. J Colloid Interface Sci 2023; 641:348-358. [PMID: 36940591 DOI: 10.1016/j.jcis.2023.03.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
HYPOTHESES Bicontinuous microemulsions (BMEs) have attracted attention as unique heterogeneous mixture for electrochemistry. An interface between two immiscible electrolyte solutions (ITIES) is an electrochemical system that straddles the interface between a saline and an organic solvent with a lipophilic electrolyte. Although most BMEs have been reported with nonpolar oils, such as toluene and fatty acids, it should be possible to construct a sponge-like three-dimensionally expanded ITIES comprising a BME phase. EXPERIMENTS Dichloromethane (DCM)-water microemulsions stabilized by a surfactant were investigated in terms of the concentrations of co-surfactants and hydrophilic/lipophilic salts. A Winsor III microemulsion three-layer system, consisting of an upper saline phase, a middle BME phase, and a lower DCM phase, was prepared, and electrochemistry was conducted in each phase. FINDINGS We found the conditions for ITIES-BME phases. Regardless of where the three electrodes were placed in the macroscopically heterogeneous three-layer system, electrochemistry was possible, as in a homogeneous electrolyte solution. This indicates that the anodic and cathodic reactions can be divided into two immiscible solution phases. A redox flow battery comprising a three-layer system with a BME as the middle phase was demonstrated, paving the way for applications such as electrolysis synthesis and secondary batteries.
Collapse
Affiliation(s)
- Kodai Nakao
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan; Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Koji Noda
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Hinako Hashimoto
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Mayuki Nakagawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Taisei Nishimi
- Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), Room 422, Bldg. 12, Faculty of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akihiro Ohira
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yukari Sato
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Dai Kato
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoyuki Kamata
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Osamu Niwa
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Masashi Kunitake
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan; Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
9
|
Heroin detection in a droplet hosted in a 3D printed support at the miniaturized electrified liquid-liquid interface. Sci Rep 2022; 12:18615. [PMID: 36329050 PMCID: PMC9633610 DOI: 10.1038/s41598-022-21689-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Simple sensing protocols for the detection of illicit drugs are needed. Electrochemical sensing is especially attractive in this respect, as its cost together with the analytical accuracy aspires to replace still frequently used colorimetric tests. In this work, we have shown that the interfacial transfer of protonated heroin can be followed at the electrified water-1,2-dichloroethane interface. We have comprehensively studied the interfacial behavior of heroin alone and in the presence of its major and abundant cutting agents, caffeine and paracetamol. To maximally increase developed sensing protocol applicability we have designed and 3D printed a platform requiring only a few microliters of the aqueous and the organic phase. The proposed sensing platform was equipped with a cavity hosting a short section of Ag/AgCl electrode, up to 20 µL of the aqueous phase and the end of the micropipette tip being used as a casing of a fused silica capillary having 25 µm as the internal pore diameter. The volume of the organic phase was equal to around 5 µL and was present inside the micropipette tip. We have shown that under optimized conditions heroin can be detected in the presence of caffeine and paracetamol existing in a sample with 10,000 times excess over the analyte of interest. The calculated limit of detection equal to 1.3 µM, linear dynamic range spanning to at least 50 µM, good reproducibility, and very low volume of needed sample is fully in line with forensic demands.
Collapse
|
10
|
Oleic and nitro-oleic acid behavior at an electrified water-1,2-dichloroethane interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Żubrycka A, Kwaśnica A, Haczkiewicz M, Sipa K, Rudnicki K, Skrzypek S, Poltorak L. Illicit drugs street samples and their cutting agents. The result of the GC-MS based profiling define the guidelines for sensors development. Talanta 2022; 237:122904. [PMID: 34736717 DOI: 10.1016/j.talanta.2021.122904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
In this work, we have focused on the profiling of 5647 street samples covering marijuana, common and new recreational illicit drugs. All samples were analyzed using gas chromatography-mass spectrometry (GC-MS) technique. In total we have identified 53 illicit drugs with Δ-9-tetrahydrocannabinol (THC), amphetamine, N-ethylhexedrone, 3,4-methylenedioxy methamphetamine (MDMA), 4-chloromethcathinone (4-CMC), α-pyrrolidinoisohexaphenone (α-PHiP), cocaine, and 4-chloroethcathinone (4-CEC) being most commonly found and making 38.5, 17.8, 15.5, 8.0, 3.5, 2.7, 2.1, and 2.0% of the total studied pool, respectively. Except for methadone, all analyzed street samples were spiked with at least one cutting agent. Caffeine was the most frequently found adulterating addition present in around 33% (excluding marijuana) of the analyzed samples. Other identified cutting agents make an impressive group of more than 160 compounds. Finally, we have tabulated, illustrated, and discussed presented data in a view of smart and portable sensors development.
Collapse
Affiliation(s)
- Anna Żubrycka
- Laboratorium Badań Toksykologicznych Lab4Tox Sp. Z o.o., Skłodowskiej-Curie 55/61, 50-369, Wroclaw, Poland; Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Andrzej Kwaśnica
- Laboratorium Badań Toksykologicznych Lab4Tox Sp. Z o.o., Skłodowskiej-Curie 55/61, 50-369, Wroclaw, Poland
| | - Monika Haczkiewicz
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Karolina Sipa
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Konrad Rudnicki
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Sławomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Lukasz Poltorak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
12
|
|
13
|
Kaliszczak M, Durand P, Wenger E, Dossot M, Jones F, Arrigan DWM, Herzog G. Electrochemically controlled cocrystallisation of caffeine:1-hydroxy-2-naphthoic acid. CrystEngComm 2022. [DOI: 10.1039/d1ce01281a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The formation of caffeine and 1-hydroxy-2-naphtoic acid cocrystals at a water–oil interface was controlled by potential difference, Δwoϕ, favouring one polymorphic form of the cocrystal.
Collapse
Affiliation(s)
- Magdalena Kaliszczak
- Chimie Physique et Microbiologie pour l'Environment – LCPME, CNRS – Université de Lorraine, Villers Les Nancy, France
| | - Pierrick Durand
- CRM2 UMR 7036, Université de Lorraine, Vandoeuvre-lès-Nancy, Lorraine, France
| | - Emmanuel Wenger
- CRM2 UMR 7036, Université de Lorraine, Vandoeuvre-lès-Nancy, Lorraine, France
| | - Manuel Dossot
- Chimie Physique et Microbiologie pour l'Environment – LCPME, CNRS – Université de Lorraine, Villers Les Nancy, France
| | - Franca Jones
- School of Molecular & Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia
| | - Damien W. M. Arrigan
- School of Molecular & Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia
| | - Grégoire Herzog
- Chimie Physique et Microbiologie pour l'Environment – LCPME, CNRS – Université de Lorraine, Villers Les Nancy, France
| |
Collapse
|
14
|
Zhang F, Liu J. Interactions of the Cocaine and Quinine Aptamer with Gold Nanoparticles under the Dilute Biosensor and Concentrated NMR Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11939-11947. [PMID: 34591480 DOI: 10.1021/acs.langmuir.1c02239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cocaine aptamer was later found to bind quinine with an even higher affinity. In this work, we used a fluorescently labeled aptamer named MN4 to study its adsorption by gold nanoparticles (AuNPs), and the subsequent displacement by the nonlabeled aptamer and by quinine. Without washing, 14% of the preadsorbed MN4 strands were displaced by 4000-fold excess of free MN4, whereas no displacement was observed after washing, suggesting that washing removed weakly adsorbed aptamers. In a previous paper, rapid exchange was observed with NMR by directly mixing AuNPs and concentrated MN4, and our work has unified the dilute and concentrated aptamer conditions. The difference is attributable to the conformation of the adsorbed aptamer, where dilute aptamers are adsorbed in a collapsed state with a much higher affinity to AuNPs. In addition, the preadsorbed MN4 aptamer cannot be desorbed by adding quinine, indicating that direct desorption-based fluorescent sensors cannot be made. Finally, based on the similar color responses to both the aptamer and its nonbinding mutants, the label-free colorimetric detection method cannot be directly applied for the detection of quinine. This work indicated that different experimental conditions need to be carefully compared to have a unified understanding of aptamer/AuNP systems.
Collapse
Affiliation(s)
- Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
15
|
Langmaier J, Maier V, Samec Z. Voltammetry of Several Natural and Synthetic Opioids at a Polarized Ionic Liquid Membrane. ChemElectroChem 2021. [DOI: 10.1002/celc.202100701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jan Langmaier
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| | - Vítězslav Maier
- Department of Analytical Chemistry Faculty of Science Palacký University Olomouc tř. 17. listopadu 12 CZ-77146 Olomouc Czech Republic
| | - Zdeněk Samec
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| |
Collapse
|
16
|
Rudnicki K, Sobczak K, Borgul P, Skrzypek S, Poltorak L. Determination of quinine in tonic water at the miniaturized and polarized liquid-liquid interface. Food Chem 2021; 364:130417. [PMID: 34175631 DOI: 10.1016/j.foodchem.2021.130417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022]
Abstract
In this work we report an electrochemical approach to quantitative and qualitative analysis of quinine (QN) at the interface between two immiscible electrolyte solutions (ITIES). This was done at the macroscopic (macroITIES) and microscopic (µITIES) systems using ion transfer voltammetry (ITV). The linear response of the peak current vs. increasing concentrations of QN at the µITIES was from 2.50 µM to 29.13 µM and the corresponding calculated limit of detection (LOD) for the current signals originating from QN transfer from the aqueous to the organic phase was equal to 0.49 µM. Additionally, the influence of pH (2-12) of the aqueous phase on the recorded QN signals was investigated. We have found that our method is fully applicable for QN direct determination in non-treated tonic water, as confirmed on three different real samples from three different manufacturers. Finally, a number of validation parameters for the developed method are provided and discussed.
Collapse
Affiliation(s)
- Konrad Rudnicki
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| | - Karolina Sobczak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Paulina Borgul
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Sławomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Lukasz Poltorak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| |
Collapse
|
17
|
Zanotto F, Fernández R, Dassie S. An electroanalytical method for monitoring acid hydrolysis reactions using thick-film modified electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Kowalewska K, Rodriguez-Prieto T, Skrzypek S, Cano J, Ramírez RG, Poltorak L. Electroanalytical study of five carbosilane dendrimers at the interface between two immiscible electrolyte solutions. Analyst 2021; 146:1376-1385. [PMID: 33403382 DOI: 10.1039/d0an02101f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work is focused on the electroanalytical study of a family of five imidazolium-terminated carbosilane dendrimers (from generation G1 to G3) at the polarized liquid-liquid interface formed between water and 1,2-dichloroethane solutions. All dendrimers with permanently and positively charged imidazolium groups located at the periphery within the branched carbosilane core were found to be electrochemically active. Based on the concentration and scan rate dependencies we have concluded that these molecules undergo interfacial ion transfer processes accompanied by interfacial adsorption/desorption rather than the electrochemically induced interfacial formation of the macromolecule-anion (tetrakis(4-chlorophenyl)borate) from the organic phase complex. Also, we report several physicochemical and electroanalytical parameters (e.g. diffusion coefficients, LODs, and detection sensitivities) for the studied family of dendrimers. Our work aims to contribute to the understating of the interaction between branched macromolecules and biomimetic interfaces.
Collapse
Affiliation(s)
- Karolina Kowalewska
- Department of Inorganic and Analytical Chemistry, Electroanalysis and Electrochemistry Group, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
19
|
Poltorak L, Rudnicki K, Kolivoška V, Sebechlebská T, Krzyczmonik P, Skrzypek S. Electrochemical study of ephedrine at the polarized liquid-liquid interface supported with a 3D printed cell. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123411. [PMID: 32711385 DOI: 10.1016/j.jhazmat.2020.123411] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
In this work, we have examined an electrochemical behavior of the ephedrine at the polarized liquid-liquid interface (water/1,2-dichloroethane). In this respect, we first designed and then 3D printed polyamide-based electrochemical cell that was used as the liquid-liquid interface support during electroanalytical measurements. The protonated ephedrine undergoes a reversible ion transfer reaction with the standard Galvani potential difference equal to +0.269 V. This value was used to calculate the water - 1,2-dichloroethane logP equal to -4.6. Ion transfer voltammetry was used to build the calibration curve and allowed for the ephedrine detection from concentration equal to 20 μM. By varying the pH of the aqueous phase from 2 up to 12 we were able to plot the ion partition diagram that was further analyzed and provided several pharmacochemical information. To further push this work towards practical utility, we have formulated the artificial urine and studied the interfacial behavior of all its components at the polarized liquid-liquid interface. Ephedrine detection from real spiked urine samples was also performed.
Collapse
Affiliation(s)
- Lukasz Poltorak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| | - Konrad Rudnicki
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of The Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague, Czech Republic.
| | - Táňa Sebechlebská
- J. Heyrovský Institute of Physical Chemistry of The Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague, Czech Republic; Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava 4, Slovakia
| | - Paweł Krzyczmonik
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Sławomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| |
Collapse
|
20
|
Li Z, Wang P. Point-of-Care Drug of Abuse Testing in the Opioid Epidemic. Arch Pathol Lab Med 2020; 144:1325-1334. [PMID: 32579399 DOI: 10.5858/arpa.2020-0055-ra] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The United States is experiencing an opioid overdose epidemic. Point-of-care (POC) drug of abuse testing is a useful tool to combat the intensified opioid epidemic. OBJECTIVES.— To review commercially available POC drug of abuse testing involving opioids, to review opportunities and challenges for POC opioid testing and emerging testing methods in research literature, and finally to summarize unmet clinical needs and future development prospects. DATA SOURCES.— The Google search engine was used to access information for commercial opioid POC devices and the Google Scholar search engine was used to access research literature published from 2000 to 2019 for opioid POC tests. CONCLUSIONS.— The opioid epidemic provides unprecedented opportunities for POC drug testing, with significant clinical needs. Compared with gold standard tests, limitations for commercially available opioid POC testing include lower analytical sensitivity, lower specificity, and cross-reactivity. In response to unmet clinical needs, novel methods have emerged in research literature, such as microfluidics and miniature mass spectrometry. Future prospects include the development of quantitative POC devices and smarter and real-time drug testing.
Collapse
Affiliation(s)
- Zhao Li
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Ping Wang
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
21
|
Borgul P, Rudnicki K, Chu L, Leniart A, Skrzypek S, Sudhölter EJ, Poltorak L. Layer-by-layer (LbL) assembly of polyelectrolytes at the surface of a fiberglass membrane used as a support of the polarized liquid–liquid interface. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Suárez-Herrera MF, Scanlon MD. Quantitative Analysis of Redox-Inactive Ions by AC Voltammetry at a Polarized Interface between Two Immiscible Electrolyte Solutions. Anal Chem 2020; 92:10521-10530. [PMID: 32608226 DOI: 10.1021/acs.analchem.0c01340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interface between two immiscible electrolyte solutions (ITIES) is ideally suited to detect redox-inactive ions by their ion transfer. Such electroanalysis, based on the Nernst-Donnan equation, has been predominantly performed using amperometry, cyclic voltammetry, or differential pulse voltammetry. Here, we introduce a new electroanalytical method based on alternating-current (AC) voltammetry with inherent advantages over traditional approaches such as avoidance of positive feedback iR compensation, a major issue for liquid|liquid electrochemical cells containing resistive organic media and interfacial areas in the cm2 and mm2 range. A theoretical background outlining the generation of the analytical signal is provided and based on extracting the component that depends on the Warburg impedance from the total impedance. The quantitative detection of a series of model redox-inactive tetraalkylammonium cations is demonstrated, with evidence provided of the transient adsorption of these cations at the interface during the course of ion transfer. Since ion transfer is diffusion-limited, by changing the voltage excitation frequency during AC voltammetry, the intensity of the Faradaic response can be enhanced at low frequencies (1 Hz) or made to disappear completely at higher frequencies (99 Hz). The latter produces an AC voltammogram equivalent to a "blank" measurement in the absence of analyte and is ideal for background subtraction. Therefore, major opportunities exist for the sensitive detection of ionic analyte when a "blank" measurement in the absence of analyte is impossible. This approach is particularly useful to deconvolute signals related to reversible electrochemical reactions from those due to irreversible processes, which do not give AC signals.
Collapse
Affiliation(s)
- Marco F Suárez-Herrera
- Departamento De Química, Facultad De Ciencias, Universidad Nacional De Colombia, Cra 30 # 45-03, Edificio 451, Bogotá, Colombia
| | - Micheál D Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| |
Collapse
|
23
|
|
24
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
25
|
D’Aurelio R, Chianella I, Goode JA, Tothill IE. Molecularly Imprinted Nanoparticles Based Sensor for Cocaine Detection. BIOSENSORS 2020; 10:E22. [PMID: 32143406 PMCID: PMC7146329 DOI: 10.3390/bios10030022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023]
Abstract
The development of a sensor based on molecularly imprinted polymer nanoparticles (nanoMIPs) and electrochemical impedance spectroscopy (EIS) for the detection of trace levels of cocaine is described in this paper. NanoMIPs for cocaine detection, synthesized using a solid phase, were applied as the sensing element. The nanoMIPs were first characterized by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering and found to be ~148.35 ± 24.69 nm in size, using TEM. The nanoMIPs were then covalently attached to gold screen-printed electrodes and a cocaine direct binding assay was developed and optimized, using EIS as the sensing principle. EIS was recorded at a potential of 0.12 V over the frequency range from 0.1 Hz to 50 kHz, with a modulation voltage of 10 mV. The nanoMIPs sensor was able to detect cocaine in a linear range between 100 pg mL-1 and 50 ng mL-1 (R2 = 0.984; p-value = 0.00001) and with a limit of detection of 0.24 ng mL-1 (0.70 nM). The sensor showed no cross-reactivity toward morphine and a negligible response toward levamisole after optimizing the sensor surface blocking and assay conditions. The developed sensor has the potential to offer a highly sensitive, portable and cost-effective method for cocaine detection.
Collapse
Affiliation(s)
- Roberta D’Aurelio
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK;
| | - Iva Chianella
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK;
| | - Jack A. Goode
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Ibtisam E. Tothill
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK;
| |
Collapse
|
26
|
Zanotto F, Fernández R, Dassie S. Facilitated proton transfer reactions via water autoprotolysis across oil|water interfaces. Half-wave potential. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Gao L, Deng Z, Lin Y, Sulemana H, Shi H, Yu C, Chen S. Highly sensitive detection for cocaine using an aptamer-modified molybdenum disulfide/gold nanoparticle microarray. NEW J CHEM 2020. [DOI: 10.1039/d0nj02342f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detection of cocaine based on an aptamer-modified molybdenum disulfide@gold nanoparticle (MoS2@AuNP) nanosheet array immobilized on aminated slides was achieved.
Collapse
Affiliation(s)
- Li Gao
- Department of Otolaryngology Head and Neck Surgery
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| | - Zebin Deng
- Institute of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yuanwei Lin
- Institute of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Husseini Sulemana
- Institute of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Haixia Shi
- Institute of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Chaosheng Yu
- Department of Otolaryngology Head and Neck Surgery
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| | - Shuaijun Chen
- Department of Otolaryngology Head and Neck Surgery
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| |
Collapse
|
28
|
Rudnicki K, Poltorak L, Skrzypek S, Sudhölter EJ. Ion transfer voltammetry for analytical screening of fluoroquinolone antibiotics at the water – 1.2-dichloroethane interface. Anal Chim Acta 2019; 1085:75-84. [DOI: 10.1016/j.aca.2019.07.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/06/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
|
29
|
Rudnicki K, Brycht M, Leniart A, Domagała S, Kaczmarek K, Kalcher K, Skrzypek S. A Sensitive Sensor Based on Single‐walled Carbon Nanotubes: Its Preparation, Characterization and Application in the Electrochemical Determination of Drug Clorsulon in Milk Samples. ELECTROANAL 2019. [DOI: 10.1002/elan.201900387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Konrad Rudnicki
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Mariola Brycht
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
- Charles University, Faculty of ScienceDepartment of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry Albertov 6 CZ-12843 Prague 2 Czech Republic
| | - Andrzej Leniart
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Sławomir Domagała
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Katarzyna Kaczmarek
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Kurt Kalcher
- Karl-Franzens University GrazInstitute of Chemistry-Analytical Chemistry Universitaetsplatz 1 Graz 8010 Austria
| | - Sławomira Skrzypek
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| |
Collapse
|