1
|
Cao X, Cong P, Song Y, Liu Y, Xue C, Xu J. Promising mass spectrometry imaging: exploring microscale insights in food. Crit Rev Food Sci Nutr 2025:1-32. [PMID: 39817602 DOI: 10.1080/10408398.2025.2451189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This review focused on mass spectrometry imaging (MSI), a powerful tool in food analysis, covering its ion source schemes and procedures and their applications in food quality, safety, and nutrition to provide detailed insights into these aspects. The review presented a detailed introduction to both commonly used and emerging ionization sources, including nanoparticle laser desorption/ionization (NPs-LDI), air flow-assisted ionization (AFAI), desorption ionization with through-hole alumina membrane (DIUTHAME), plasma-assisted laser desorption ionization (PALDI), and low-temperature plasma (LTP). In the MSI process, particular emphasis was placed on quantitative MSI (QMSI) and super-resolution algorithms. These two aspects synergistically enhanced MSI's analytical capabilities: QMSI enabled accurate relative and absolute quantification, providing reliable data for composition analysis, while super-resolution algorithms improved molecular spatial imaging resolution, facilitating biomarker and trace substance detection. MSI outperformed conventional methods in comprehensively exploring food functional factors, biomarker discovery, and monitoring processing/storage effects by discerning molecular species and their spatial distributions. However, challenges such as immature techniques, complex data processing, non-standardized instruments, and high costs existed. Future trends in instrument enhancement, multispectral integration, and data analysis improvement were expected to deepen our understanding of food chemistry and safety, highlighting MSI's revolutionary potential in food analysis and research.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Shi Q, Zhang X, Liu X, Yan C, Lu S. Visualization of PFOA accumulation and its effects on phospholipid in zebrafish liver by MALDI Imaging. Anal Bioanal Chem 2024:10.1007/s00216-024-05214-y. [PMID: 38451276 DOI: 10.1007/s00216-024-05214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Exposure to poly- and perfluoroalkyl substances (PFASs) can result in bioaccumulation. Initial findings suggested that PFASs could accumulate in tissues rich in both phospholipids and proteins. However, our current understanding is limited to the average concentration of PFASs or phospholipid content across entire tissue matrices, leaving unresolved the spatial variations of lipid metabolism associated with PFOA in zebrafish tissue. To address gap, we developed a novel methodology for concurrent spatial profiling of perfluorooctanoic acid (PFOA) and individual phospholipids within zebrafish hepatic tissue sections, utilizing matrix-assisted laser desorption/ionization time of flight imaging mass spectrometry (MALDI-TOF-MSI). 5-diaminonapthalene (DAN) matrix and laser sensitivity of 50.0 were optimized for PFOA detection in MALDI-TOF-MSI analysis with high spatial resolution (25 μm). PFOA was observed to accumulate within zebrafish liver tissue. H&E staining results corroborating the damage inflicted by PFOA accumulation, consistent with MALDI MSI results. Significant up-regulation of 15 phospholipid species was observed in zebrafish groups exposed to PFOA, with these phospholipid demonstrating varied spatial distribution within the same tissue. Furthermore, co-localized imaging of distinct phospholipids and PFOA within identical tissue sections suggested there could be two distinct potential interactions between PFOA and phospholipids, which required further investigation. The MALDI-TOF-IMS provides a new tool to explore in situ spatial distributions and variations of the endogenous metabolites for the health risk assessment and ecotoxicology of emerging environmental pollutants.
Collapse
Affiliation(s)
- Qiuyue Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Nie W, Lu Q, Hu T, Xie M, Hu Y. Visualizing the distribution of curcumin in the root of Curcuma longa via VUV-postionization mass spectrometric imaging. Analyst 2022; 148:175-181. [PMID: 36472862 DOI: 10.1039/d2an01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Curcumin is a dietary spice and coloring agent widely used in food and herbal medicine. Herein, we visualized the distribution of curcumin in fresh Curcuma longa (turmeric) root sections using the state-of-the-art vacuum-ultraviolet (VUV, 118 nm) single photon-postionization mass spectrometric imaging method. Compared with other mass spectrometric imaging methods, the proposed method does not require any sample pre-treatment. The proposed approach could be more conducive to in situ detection of small molecules. The mass spectroscopic imaging (MSI) images of curcumin sections with a lateral resolution of 100 μm indicated that the concentrations of curcumin decreased from the phloem to the xylem of the root. We also show MS imaging of curcumin in the turmeric root at different maturity periods, revealing the transformation of this endogenous species. The result of quantitative analysis indicates that the total curcumin content of the mature turmeric root is estimated to be 3.43%, which is consistent with the previous report that the content of curcumin in the turmeric root is estimated between 3% and 5%. The report indicated that the proposed method of VUV single photon postionization MSI can be used to explore the metabolic process of plants, which is critical for herbal farming, harvest, and its ingredient extraction.
Collapse
Affiliation(s)
- Wuyi Nie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qiao Lu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Tao Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Liu H, Pan Y, Xiong C, Han J, Wang X, Chen J, Nie Z. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for in situ analysis of endogenous small molecules in biological samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Mass spectrometry imaging of diclofenac and its metabolites in tissues using nanospray desorption electrospray ionization. Anal Chim Acta 2022; 1233:340490. [DOI: 10.1016/j.aca.2022.340490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
|
7
|
Luo Y, Song C, Mao J, Peng Z, Sun S, Zhang Y, Yu A, Zhang W, Zhao W, Ouyang G. Developing a Noncontact Heating Matrix Spraying Apparatus with Controllable Matrix Film Formation for MALDI Mass Spectrometry Imaging. Anal Chem 2022; 94:12136-12143. [PMID: 35993787 DOI: 10.1021/acs.analchem.2c02192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Matrix deposition plays an important role in obtaining high-quality and reliable molecular spatial location information for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To control the matrix film formation, an automatic matrix spraying apparatus was developed with the introduction of a noncontact heating lamp. Compared with the unheated condition, the noncontact heating lamp suppressed the coffee-ring effect and the diffusion phenomenon of the analyte effectively by controllable matrix film formation. Meanwhile, the signal intensity was increased by 2-5 fold. To prove the ability of the matrix deposition apparatus, the apparatus combined with metabolomics analysis was used to show the spatial distribution of the substance in sprouted potato tubers. The potential biomarkers at m/z 868.5049 and m/z 852.5101 were identified as α-solanine and α-chaconine, and the synthesis pathways were further searched. To further demonstrate the quality of MALDI images including localization and spatial resolution, lipid distribution in rat brain tissue was investigated by the developed noncontact heating matrix spraying apparatus. An excellent match with distinguishable compartments of lipids in the rat brain was obtained between the H&E-stained sections and MALDI-MSI images. These results indicate that the developed noncontact heating matrix spraying apparatus is reliable and provides a low-cost, high-quality, rapid approach for MALDI-MSI.
Collapse
Affiliation(s)
- Yake Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenchen Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Mao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zifang Peng
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shihao Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanhao Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Lin H, Yuan Y, Hang T, Wang P, Lu S, Wang H. Matrix-assisted laser desorption/ionization mass spectrometric imaging the spatial distribution of biodegradable vascular stents using a self-made semi-quantitative target plate. J Pharm Biomed Anal 2022; 219:114888. [PMID: 35752027 DOI: 10.1016/j.jpba.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
In recent years, the development and optimization of biodegradable coronary stents have become the research focus of many medical device manufacturers and scientific research institutions since they can be completely degraded and absorbed, and they restore vascular function. However, there is a lack of in situ quantification of these stents spatially in tissue in vivo. In this study, matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT ICR) and time-of-flight (TOF) mass spectrometric imaging (MSI) were used to analyze the time-dependent distributions of a biodegradable vascular scaffold, which consisted of copolymers of lactic acid and glycolic acid (PLGA) and its degradation products in cross-sections and longitudinal sections of blood vessels. The MALDI-MSI methods for analyzing the distribution of PLGA and its derivatives in vivo were established by optimizing the conditions of sample pretreatment and mass spectrometry (MS). In order to semi-quantify the contents of PLGA degradation products in blood vessels, self-made stainless-steel and indium tin oxide (ITO) target plates were developed to compare and establish the standard curves for semi-quantitative analysis. The target plate can be placed on the target carrier of MS simultaneously with the conductive slide, which can simultaneously carry out vapor deposition or spray on the substrate, to ensure the parallelism of the pretreatment experiments between the standards and the actual vascular samples. The proposed method provided a powerful tool for evaluating the distributions and degradation process of biological stent materials in the coronary artery, as well as provided technical support for the research and development of degradable biological stents and product optimization.
Collapse
Affiliation(s)
- Houwei Lin
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Yinlian Yuan
- Department of Paediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tian Hang
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Peng Wang
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Shijiao Lu
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Hang Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Zhao C, Cai Z. Three-dimensional quantitative mass spectrometry imaging in complex system: From subcellular to whole organism. MASS SPECTROMETRY REVIEWS 2022; 41:469-487. [PMID: 33300181 DOI: 10.1002/mas.21674] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Mass spectrometry imaging (MSI) has been applied for label-free three-dimensional (3D) imaging from position array across the whole organism, which provides high-dimensional quantitative data of inorganic or organic compounds that may play an important role in the regulation of cellular signaling, including metals, metabolites, lipids, drugs, peptides, and proteins. While MSI is suitable for investigation of the spatial distribution of molecules, it has a limitation with visualization and quantification of multiple molecules. 3D-MSI, however, can be applied toward exploring metabolic pathway as well as the interactions of lipid-protein, protein-protein, and metal-protein in complex systems from subcellular to the whole organism through an untargeted methodology. In this review, we highlight the methods and applications of MS-based 3D imaging to address the complexity of molecular interaction from nano- to micrometer lateral resolution, with particular focus on: (a) common and hybrid 3D-MSI techniques; (b) quantitative MSI methodology, including the methods using a stable isotope labeling internal standard (SILIS) and SILIS-free approaches with tissue extinction coefficient or virtual calibration; (c) reconstruction of the 3D organ; (d) application of 3D-MSI for biomarker screening and environmental toxicological research. 3D-MSI quantitative analysis provides accurate spatial information and quantitative variation of biomolecules, which may be valuable for the exploration of the molecular mechanism of the disease progresses and toxicological assessment of environmental pollutants in the whole organism. Additionally, we also discuss the challenges and perspectives on the future of 3D quantitative MSI.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
10
|
Meng L, Han J, Chen J, Wang X, Huang X, Liu H, Nie Z. Development of an Automatic Ultrasonic Matrix Sprayer for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem 2022; 94:6457-6462. [PMID: 35438954 DOI: 10.1021/acs.analchem.2c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has emerged as a powerful tool for studying the spatial distribution of various types of molecules. Matrix deposition is a critical step for obtaining high-quality imaging data. An automatic device named SoniCoat was fabricated based on an ultrasonic nozzle driven by a pizeoelectric ceramic for matrix coating in the present study. Compared with the minihumidifier developed previously by our group for matrix deposition, SoniCoat realized automation, and the ultrasonic nozzle of this device is easy to clean and less likely to get clogged, indicating a longer life. Compared with commercial and homemade instruments such as the TM-Sprayer and electrospray matrix coating device, our newly developed device achieved a good nebulization effect without the need for high-pressure gas flow and high voltage. Matrix deposition by SoniCoat generated more homogeneous matrix crystals with diameters of about 10 μm and reduced the occurrence of molecular diffusion to a greater extent, compared with the results by TM-Sprayer. Repeatable high-spatial-resolution MS imaging data were obtained with the help of SoniCoat. Furthermore, the newly developed device can also be successfully applied for in situ derivatization.
Collapse
Affiliation(s)
- Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Hu W, Nie H, Wang Y, Li N, Di S, Pan Q, Liu J, Han Y. Tracing the migration and transformation of metabolites in xylem during wood growth by mass spectrometry imaging. Analyst 2022; 147:1551-1558. [DOI: 10.1039/d1an02251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MALDI MSI was used to explore the rule of metabolite migration and transformation for the first time. The rules of heartwood formation and resin secretion were visualized and fully explored.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuangshuang Di
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Jikun Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| |
Collapse
|
12
|
Xie H, Li H, Zhao Y, Liu L, Chen X. Analysis of dietary exposure and risk assessment of pesticide residues in roots and rhizomes of Chinese herbs. J Food Sci 2021; 87:124-140. [PMID: 34939193 DOI: 10.1111/1750-3841.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
Medicine food homologous (MFH) plants provide therapeutic and health care effects through diet. Thus, a risk assessment system for hazardous ingredient residues is urgently required to ensure their safe use. In this study, the pesticide contamination of six root and rhizome Chinese herbs, Ginseng Radix et Rhizoma, Panacis Quinquefolii Radix, Pseudostellariae Radix, Salviae Miltiorrhizae Radix et Rhizoma, Codonopsis Radix, and Glehniae Radix, and the risks associated with their intake were investigated. A total of 420 MFH plant samples collected from 22 provinces in China were tested, and 61 pesticides were detected in 413 samples. Multiple pesticide residues were detected in each MFH sample, with contents ranging from 0.0002 to 3.010 mg/kg dry weight. Carbendazim (≥47.14%) and propham (≥40%) were the most frequently detected pesticides. Risk assessment determined by hazard quotients indicated that the risks were acceptable, with no short- or long-term adverse health effects. However, considering the high incidence of residues and the detection of unregistered or even prohibited pesticides, strict supervision of soil quality and pesticide application (particularly cadusafos) in MFH plant cultivation are recommended to aid in monitoring MFH plant quality and ensuring diet and drug safety. PRACTICAL APPLICATION: Ensure the diet and drug safety of Chinese herbs.
Collapse
Affiliation(s)
- Hanyi Xie
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huijuan Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanfang Zhao
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lanqi Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
13
|
Jiang Y, Sun J, Cao X, Liu H, Xiong C, Nie Z. Laser desorption/ionization mass spectrometry imaging-A new tool to see through nanoscale particles in biological systems. Chemistry 2021; 28:e202103710. [PMID: 34897857 DOI: 10.1002/chem.202103710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Yuming Jiang
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Jie Sun
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Xiaohua Cao
- Jiujiang University, College of Chemical Engineering, CHINA
| | - Huihui Liu
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Caiqiao Xiong
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, CHINA
| | - Zongxiu Nie
- Institute of Chemistry Chinese Academy of Sciences, Chinese Academy of Sciences, Zhongguancun St., 100190, Beijing, CHINA
| |
Collapse
|
14
|
Kulkarni AS, Huang L, Qian K. Material-assisted mass spectrometric analysis of low molecular weight compounds for biomedical applications. J Mater Chem B 2021; 9:3622-3639. [PMID: 33871513 DOI: 10.1039/d1tb00289a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low molecular weight compounds play an important role in encoding the current physiological state of an individual. Laser desorption/ionization mass spectrometry (LDI MS) offers high sensitivity with low cost for molecular detection, but it is not able to cover small molecules due to the drawbacks of the conventional matrix. Advanced materials are better alternatives, showing little background interference and high LDI efficiency. Herein, we first classify the current materials with a summary of compositions and structures. Matrix preparation protocols are then reviewed, to enhance the selectivity and reproducibility of MS data better. Finally, we highlight the biomedical applications of material-assisted LDI MS, at the tissue, bio-fluid, and cellular levels. We foresee that the advanced materials will bring far-reaching implications in LDI MS towards real-case applications, especially in clinical settings.
Collapse
Affiliation(s)
- Anuja Shreeram Kulkarni
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China.
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
15
|
Xie H, Wu R, Hung YLW, Chen X, Chan TWD. Development of a Matrix Sublimation Device with Controllable Crystallization Temperature for MALDI Mass Spectrometry Imaging. Anal Chem 2021; 93:6342-6347. [PMID: 33852267 DOI: 10.1021/acs.analchem.1c00260] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The size and distribution of matrix crystals deposited on the surface of a tissue section play a key role in the performance of MALDI mass spectrometry imaging (MALDI-MSI). In this study, uniform distribution and a restricted size of matrix crystals were achieved via a homemade matrix sublimation device with controllable crystallization temperature. The crystallization temperature was stably controlled at a subzero temperature, and homogeneous matrix crystals with diameters <0.2 μm were generated on the sample surface. Typical MALDI-MSI experiments of endogenous and exogenous components in the tissues of strawberries, kidneys, and mussels were conducted to examine the performance of the sublimator. Good reproducibility of MALDI-MSI was achieved, and the quality of ion images was significantly improved. These results demonstrate that the developed sublimator should have potential in matrix deposition for further high resolution MALDI-MSI application.
Collapse
Affiliation(s)
- Hanyi Xie
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), 19th Keyuan Road, Jinan, Shandong 250014, People's Republic of China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, People's Republic of China
| | - Y L Winnie Hung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, People's Republic of China
| | - Xiangfeng Chen
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), 19th Keyuan Road, Jinan, Shandong 250014, People's Republic of China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
16
|
Xie P, Liang X, Song Y, Cai Z. Mass Spectrometry Imaging Combined with Metabolomics Revealing the Proliferative Effect of Environmental Pollutants on Multicellular Tumor Spheroids. Anal Chem 2020; 92:11341-11348. [DOI: 10.1021/acs.analchem.0c02025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
17
|
Xie P, Zhao C, Liang X, Huang W, Chen Y, Cai Z. Preparation of Frozen Sections of Multicellular Tumor Spheroids Coated with Ice for Mass Spectrometry Imaging. Anal Chem 2020; 92:7413-7418. [PMID: 32374161 DOI: 10.1021/acs.analchem.9b05812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing studies have utilized mass spectrometry imaging (MSI) that is a label-free tool to investigate drug penetration and drug biotransformation in multicellular tumor spheroids (MCTS). Currently, the gelatin-assisted sectioning method is widely used to prepare frozen sections of MCTS for MSI. However, owing to the limited transparency of frozen gelatin, MCTS with diameters less than 500 μm that closely mimic solid tumors are difficult to be detected when cryosectioning. In order to identify the presence of MCTS, hematoxylin and eosin staining for frozen sections and dye pretreatment for MCTS were employed in previous works, which either increased the analytical time and cost in sample preparation or caused signal suppression in sample analysis. Herein, a new sectioning method was developed to prepare MCTS frozen sections. MCTS was coated with ice to ensure good visibility for small-size MCTS. The optimal cutting temperature compound was added around the ice block to assist the formation of frozen sections. A precast frozen mold was prepared to allow the acquisition of complete MCTS frozen sections. The developed method was applied to investigate lipid distribution in MCTS by using matrix-assisted laser desorption/ionization MSI. Compared to the gelatin-assisted sectioning method, our method did not cause signal suppression and analyte delocalization. Thus, this method provides an easy, universal, and innovative strategy to prepare MCTS frozen sections for further MSI analysis. Besides, we applied our method to investigate the penetration of bisphenol A in MCTS.
Collapse
Affiliation(s)
- Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Xiaoping Liang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| |
Collapse
|
18
|
Liu W, Nie H, Liang D, Bai Y, Liu H. Phospholipid imaging of zebrafish exposed to fipronil using atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry. Talanta 2020; 209:120357. [DOI: 10.1016/j.talanta.2019.120357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
|
19
|
Tian F, Liu R, Fan C, Sun Y, Huang X, Nie Z, Zhao X, Pu X. Effects of Thymoquinone on Small-Molecule Metabolites in a Rat Model of Cerebral Ischemia Reperfusion Injury Assessed using MALDI-MSI. Metabolites 2020; 10:metabo10010027. [PMID: 31936061 PMCID: PMC7023359 DOI: 10.3390/metabo10010027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Thymoquinone is one of the main components present in Nigella sativa seeds and is known to have various biological functions in inflammation, oxidative stress, tumors, aging, and in lowering blood glucose levels. Few studies have focused on its neuroprotective effects and its regulation of small-molecule metabolites during cerebral ischemia reperfusion injury. In this study, transient middle cerebral occlusion (tMCAO) was used to establish the rat model of cerebral ischemia reperfusion injury. We investigated the effects of thymoquinone using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in a model of ischemia reperfusion injury to explore the changes in small-molecule metabolites in the brain. We found that that thymoquinone significantly improved neurobehavioral scores, reduced the cerebral infarct area, alleviated brain edema, and increased the number of normal neurons following injury. MALDI-MSI revealed that thymoquinone reduced abnormal accumulations of glucose, citric acid, succinate and potassium ions. Thymoquinone also increased the amount of energy-related molecules such as ADP, AMP, GMP, and creatine, antioxidants such as glutathione, ascorbic acid, and taurine, and other metabolism-related molecules such as glutamate, glutamine, aspartate, N-acetyl-L-aspartate, and sodium ions in damaged areas of the brain following cerebral ischemia reperfusion injury. In summary, based on the neuroprotective effect of thymoquinone on cerebral ischemia reperfusion injury, this study revealed the regulation of thymoquinone on energy metabolism and small-molecule substance metabolism.
Collapse
Affiliation(s)
- Fang Tian
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Runzhe Liu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chaoxin Fan
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xi Huang
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; (X.H.); (Z.N.)
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; (X.H.); (Z.N.)
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (F.T.); (R.L.); (C.F.); (Y.S.); (X.Z.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-2431
| |
Collapse
|
20
|
Guo S, Tang W, Hu Y, Chen Y, Gordon A, Li B, Li P. Enhancement of On-tissue Chemical Derivatization by Laser-Assisted Tissue Transfer for MALDI MS Imaging. Anal Chem 2019; 92:1431-1438. [PMID: 31800227 DOI: 10.1021/acs.analchem.9b04618] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of on-tissue chemical derivatization methods for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) of small endogenous metabolites in tissues has attracted great attention for their advantages in improving detection sensitivity and ionization efficiency of poorly ionized and low abundant metabolites. Herein, a laser-assisted tissue transfer (LATT) technique was developed to enhance on-tissue derivatization of small molecules. Using a focused blue laser, a thin-layer tissue film (∼1 μm) was transferred to an acceptor slide from a 6 μm dry tissue section preliminarily coated with derivatization and matrix reagents. The acceptor slide with its ablated constituents was then imaged by MALDI MS. On-tissue chemical derivatization with amino-specific derivatization reagent 4-hydroxy-3-methoxycinnamaldehyde (CA) was carried out on LATT system. 20-235 folds increase in signal intensity for CA derivatized metabolites such as amino acids, neurotransmitters, and dipeptides were observed from rat brain tissues in comparison with conventional incubation-based derivatization. This technique was further extended to derivatize steroids with Girard reagent T (GirT). The remarkable derivatization efficiency can mainly be attributed to the minimization of ion suppression effects due to the reduced thickness of tissue section and endogenous components. Additionally, shorter derivatization time with no obvious metabolite delocalization was achieved using LATT method. These results demonstrate the advantages of LATT in the enhancement of on-tissue derivatization for the more specific and sensitive imaging of small metabolites in tissues with MALDI MS.
Collapse
Affiliation(s)
- Shuai Guo
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , China.,School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing , 211198 , China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , China.,School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing , 211198 , China
| | - Yu Hu
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , China.,School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing , 211198 , China
| | - Yanwen Chen
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , China.,School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing , 211198 , China
| | - Andrew Gordon
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , China.,School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing , 211198 , China
| | - Bin Li
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , China.,School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing , 211198 , China
| | - Ping Li
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , China.,School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing , 211198 , China
| |
Collapse
|
21
|
Lin H, Zeng X, Wang Q, Li Y, Sun B, Wang Y, Wang H. Identification and imaging of indole-3-carboxamide cannabinoids in hair using matrix-assisted laser-desorption/ionization mass spectrometry. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
LIU F, ZHANG L, ZHANG ZX, ZHANG SC. Application of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging in Analysis of Medicinal Plants. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61178-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
He Y, Guo W, Luo K, Sun Q, Lin Z, Cai Z. Poly-l-lysine-based tissue embedding compatible with matrix-assisted laser desorption ionization-mass spectrometry imaging analysis of dry and fragile aristolochia plants. J Chromatogr A 2019; 1608:460389. [PMID: 31378528 DOI: 10.1016/j.chroma.2019.460389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 02/04/2023]
Abstract
The integrity of tissue is crucial for a high-quality analysis of matrix-assisted laser desorption ionization-mass spectrometry image (MALDI-MSI). Various embedding media utilized in traditional tissue-sectioning techniques are generally not recommended for MALDI-MSI of dry and fragile plant tissues because of the ion suppression effect in MALDI ionization in the low-mass region as well as the undesirable structural deformation during the sample preparation. In this work, a novel poly-L-lysine (PLL)-based tissue embedding method was developed for MALDI-MSI analysis of dry and fragile aristolochia plant (AP) tissues. The practical application in fixation, embedding, cryosectioning, and mounting of the dry and fragile AP tissues demonstrated that the PLL-based embedding technique could provide good rigidity to the plant tissues analysis compared to that without embedding and gelatin embedding. With the assistance of the PLL embedding medium, high spatial resolution molecular ion maps of main compounds, including aristolochic acids I (AAI) and aristolochic acids II (AAII) in AP root tissue, could be achieved by MALDI-MSI with enhanced signal intensities and no obvious background interference. This work provides an alternative approach for embedding the dry and fragile plant tissues comparable with MALDI-MSI analysis.
Collapse
Affiliation(s)
- Yu He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenjing Guo
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Kailong Luo
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qianqian Sun
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
24
|
Rzagalinski I, Kovačević B, Hainz N, Meier C, Tschernig T, Volmer DA. Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix. Anal Chem 2018; 90:12592-12600. [PMID: 30260620 DOI: 10.1021/acs.analchem.8b02740] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and >440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Institute of Bioanalytical Chemistry , Saarland University , 66123 Saarbrücken , Germany
| | - Borislav Kovačević
- Group for Computational Life Sciences , Ruđer Bošković Institute , 10000 Zagreb , Croatia
| | - Nadine Hainz
- Institute of Anatomy and Cell Biology , Saarland University , 66421 Homburg , Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology , Saarland University , 66421 Homburg , Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology , Saarland University , 66421 Homburg , Germany
| | - Dietrich A Volmer
- Department of Chemistry , Humboldt University of Berlin , 12489 Berlin , Germany
| |
Collapse
|