1
|
Chen G, Xu J, Ma S, Ji X, Carney JB, Wang C, Gao X, Chen P, Fan B, Chen J, Yue Y, James TD. Visual monitoring of biocatalytic processes using small molecular fluorescent probes: strategies-mechanisms-applications. Chem Commun (Camb) 2024; 60:2716-2731. [PMID: 38353179 DOI: 10.1039/d3cc05626k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Real-time monitoring of biocatalytic-based processes is significantly improved and simplified when they can be visualized. Visual monitoring can be achieved by integrating a fluorescent unit with the biocatalyst. Herein, we outline the design strategies of fluorescent probes for monitoring biocatalysis: (1) probes for monitoring biocatalytic transfer: γ-glutamine is linked to the fluorophore as both a recognition group and for intramolecular charge transfer (ICT) inhibition; the probe is initially in an off state and is activated via the transfer of the γ-glutamine group and the release of the free amino group, which results in restoration of the "Donor-π-Acceptor" (D-π-A) system and fluorescence recovery. (2) Probes for monitoring biocatalytic oxidation: a propylamine is connected to the fluorophore as a recognition group, which cages the hydroxyl group, leading to the inhibition of ICT; propylamine is oxidized and subsequently β-elimination occurs, resulting in exposure of the hydroxyl group and fluorescence recovery. (3) Probes for monitoring biocatalytic reduction: a nitro group attached to a fluorophore as a fluorescence quenching group, this is converted to an amino group by catalytic reduction, resulting in fluorescence recovery. (4) Probes for monitoring biocatalytic hydrolysis: β-D-galactopyranoside or phosphate acts as a recognition group attached to hydroxyl groups of the fluorophore; the subsequent biocatalytic hydrolysis reaction releases the hydroxyl group resulting in fluorescence recovery. Following these 4 mechanisms, fluorophores including cyanine, coumarin, rhodamine, and Nile-red, have been used to develop systems for monitoring biocatalytic reactions. We anticipate that these strategies will result in systems able to rapidly diagnose and facilitate the treatment of serious diseases.
Collapse
Affiliation(s)
- Guang Chen
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Jie Xu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Siyue Ma
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xinrui Ji
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Jared B Carney
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Chao Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xiaoyong Gao
- Jiangsu Simba Biological Medicine Co., Ltd. Gaogang Distrct Qidizhihui Park, Taizhou City, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Baolei Fan
- Hubei University of Science and Technology, No. 88, Xianning Avenue, Xianan District, Xianning 437000, China.
| | - Ji Chen
- Jiangsu Simba Biological Medicine Co., Ltd. Gaogang Distrct Qidizhihui Park, Taizhou City, China
| | - Yanfeng Yue
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Feng L, Deng Y, Song S, Sun Y, Cui J, Ma X, Jin L, Wang Y, James TD, Wang C. Visual Identification of Trichosporon asahii, a Gut Yeast Associated with Obesity, Using an Enzymatic NIR Fluorescent Probe. Anal Chem 2022; 94:11216-11223. [PMID: 35920602 PMCID: PMC9386680 DOI: 10.1021/acs.analchem.2c01691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Lipase found in the gut microbiota participates in the
digestion
and absorption of dietary fats. As such, the gut microbiota is involved
in the regulation of the host metabolism, affecting the levels of
lipids and free fatty acids, ultimately resulting in obesity. In this
study, an enzymatic activatable near-infrared fluorescent probe, DDAO-C6, was developed for visually sensing endogenous lipase
from gut microbes. Using DDAO-C6, a cultivated intestinal
yeast strain was rapidly identified from human feces that exhibited
high lipase expression and was identified as Trichosporon
asahii Y2. We then determined that the colonization
of the gut of mice with T. asahii Y2
increased lipase activity in the digestive tract and promoted obesity
and hyperlipidemia when the mice were fed high fat diets. Above all,
the present research resulted in a fluorescence visualization tool
for the functional investigation of gut microbiota associated with
obesity and disorders of lipid metabolism.
Collapse
Affiliation(s)
- Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ying Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Shufan Song
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yanqiu Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lingling Jin
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yan Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Tony D James
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Chao Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
3
|
Jain N, Kaur N. A comprehensive compendium of literature of 1,8-Naphthalimide based chemosensors from 2017 to 2021. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Wang C, Tian Z, Zhang M, Deng Y, Tian X, Feng L, Cui J, James TD, Ma X. Visual identification of gut bacteria and determination of natural inhibitors using a fluorescent probe selective for PGP-1. Anal Chim Acta 2022; 1191:339280. [PMID: 35033245 DOI: 10.1016/j.aca.2021.339280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/24/2021] [Accepted: 11/10/2021] [Indexed: 11/01/2022]
Abstract
PGP-1 is a bacterial hydrolase that can hydrolyze the amide bond of the l-pyroglutamate (L-pGlu) residue at the amino terminus of proteins and peptides. Guided by the biological function of PGP-1, an off-on NIR fluorescent probe DDPA was developed for the visual sensing of PGP-1 by conjugating pyroglutamic acid (recognition group) and DDAN (fluorophore). Using intestinal bacteria cultivation, eight bacteria strains with active PGP-1 were identified and cultivated efficiently using DDPA. In addition, three natural inhibitors against PGP-1 were isolated from the medical herb Psoralea corylifolia, which could be used to interfere with bacterial metabolism in the gut. As such, the fluorescent probe DDPA provides an efficient method and potential tool for the investigation of intestinal microbiota.
Collapse
Affiliation(s)
- Chao Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian, 116044, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ming Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian, 116044, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ying Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian, 116044, China
| | - Xiangge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tony D James
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China; Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
5
|
Zhu H, Liu C, Su M, Rong X, Zhang Y, Wang X, Wang K, Li X, Yu Y, Zhang X, Zhu B. Recent advances in 4-hydroxy-1,8-naphthalimide-based small-molecule fluorescent probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Ratiometric two-photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
|
8
|
A mitochondrial-targeted ratiometric probe for detecting intracellular H2S with high photostability. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Zhuo Y, Zhang Y, Feng Y, Xu Y, You Q, Zhang L, Huang H, Lin L. A 3,5-dinitropyridin-2yl substituted naphthalimide-based fluorescent probe for the selective detection of biothiols and its application in cell-imaging. RSC Adv 2021; 11:9290-9295. [PMID: 35423460 PMCID: PMC8695333 DOI: 10.1039/d1ra00010a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
A highly selective OFF–ON fluorescent probe has been developed for the sensing of biothiols with a satisfactory response time and low detection limit. Also, the probe can be successfully applied for the sensing of biothiols in living cells.
Collapse
Affiliation(s)
- Yihua Zhuo
- College of Environment and Public Health
- Xiamen Huaxia University
- Xiamen 361024
- P. R. of China
| | - Yanyu Zhang
- College of Environment and Public Health
- Xiamen Huaxia University
- Xiamen 361024
- P. R. of China
| | - Yadong Feng
- College of Environment and Public Health
- Xiamen Huaxia University
- Xiamen 361024
- P. R. of China
- Biochemical Pharmacy Engineering Research Center of Fujian Province University
| | - Yuqing Xu
- School of Physics and Optoelectronics Engineering
- Ludong University
- Yantai 264025
- P. R. of China
| | - Qihua You
- College of Environment and Public Health
- Xiamen Huaxia University
- Xiamen 361024
- P. R. of China
- Biochemical Pharmacy Engineering Research Center of Fujian Province University
| | - Lei Zhang
- Biology Institute of Shanxi
- Taiyuan 030006
- P. R. of China
| | - Huabin Huang
- College of Environment and Public Health
- Xiamen Huaxia University
- Xiamen 361024
- P. R. of China
| | - Lili Lin
- College of Environment and Public Health
- Xiamen Huaxia University
- Xiamen 361024
- P. R. of China
- Biochemical Pharmacy Engineering Research Center of Fujian Province University
| |
Collapse
|
10
|
Li L, Feng L, Zhang M, He X, Luan S, Wang C, James TD, Zhang H, Huang H, Ma X. Visualization of penicillin G acylase in bacteria and high-throughput screening of natural inhibitors using a ratiometric fluorescent probe. Chem Commun (Camb) 2020; 56:4640-4643. [PMID: 32270142 DOI: 10.1039/d0cc00197j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent probe (PNA) was developed to sense and image endogenous bacterial penicillin G acylase (PGA). Oleanolic acid was discovered as a potential natural inhibitor of PGA using high-throughput screening techniques based on PNA.
Collapse
Affiliation(s)
- Lu Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhu H, Zhang H, Liang C, Liu C, Jia P, Li Z, Yu Y, Zhang X, Zhu B, Sheng W. A novel highly sensitive fluorescent probe for bioimaging biothiols and its applications in distinguishing cancer cells from normal cells. Analyst 2020; 144:7010-7016. [PMID: 31647063 DOI: 10.1039/c9an01760g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, targeting drugs made by physical loading or chemical bonding of drugs on small molecular carriers have shown a very wide application prospect in the field of tumor and cancer treatment. How to achieve the release of drugs in cancer cells has become the core of this research. One of the most important bases for drug localization is to use the difference of small molecular biothiol concentration between cancer cells and normal cells. Details of the changes of biothiol levels in the growth and reproduction of cancer cells are still poorly understood, and the main reason is the lack of sensitive real-time imaging tools for biothiols in cancer cells. In this work, we reasonably designed and synthesized the combination of 4-hydroxy-1,8-naphthalimide and NBD-Cl as a concise fluorescent probe HN-NBD for imaging biothiols in live cells and zebrafish. In addition, due to the advantages of HN-NBD design, it is sufficiently sensitive to biothiols, and further imaging can distinguish cancer cells from normal cells. Probe HN-NBD would be of great significance to biomedical researchers for the study of biothiol-related diseases, the screening of new anticancer drugs, and the early diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhu H, Liu C, Liang C, Tian B, Zhang H, Zhang X, Sheng W, Yu Y, Huang S, Zhu B. A new phenylsulfonamide-based Golgi-targeting fluorescent probe for H 2S and its bioimaging applications in living cells and zebrafish. Chem Commun (Camb) 2020; 56:4086-4089. [PMID: 32162641 DOI: 10.1039/d0cc00282h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have synthesized a simple Golgi-targeting H2S fluorescent probe which can detect endogenous and exogenous H2S in cells and zebrafish. In addition, this probe provides a new chemical tool for the detailed study of generation pathways of H2S under Golgi stress response.
Collapse
Affiliation(s)
- Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Design of a 1,8-naphthalimide-based OFF-ON type bioorthogonal reagent for fluorescent imaging in live cells. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Feng L, Ning J, Tian X, Wang C, Zhang L, Ma X, James TD. Fluorescent probes for bioactive detection and imaging of phase II metabolic enzymes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Chen D, Qin W, Fang H, Wang L, Peng B, Li L, Huang W. Recent progress in two-photon small molecule fluorescent probes for enzymes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Oxidative coupling of coumarins catalyzed by laccase. Int J Biol Macromol 2019; 135:1028-1033. [DOI: 10.1016/j.ijbiomac.2019.05.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
|
17
|
Tian Z, Ding L, Li K, Song Y, Dou T, Hou J, Tian X, Feng L, Ge G, Cui J. Rational Design of a Long-Wavelength Fluorescent Probe for Highly Selective Sensing of Carboxylesterase 1 in Living Systems. Anal Chem 2019; 91:5638-5645. [PMID: 30968686 DOI: 10.1021/acs.analchem.8b05417] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rational design of practical probes with excellent specificity and improved optical properties for a particular enzyme is always a big challenge. Herein, a practical and highly specific fluorescent probe for carboxylesterase 1 (CES1) was rationally designed using meso-carboxyl-BODIPY as the basic fluorophore based on the substrate preference and catalytic properties of CES1. Following molecular docking-based virtual screening combined with reaction phenotyping-based experimental screening, we found that MMB (probe 7) exhibited the optimal combination of sensitivity and specificity toward human CES1 in contrast to other ester derivatives. Under physiological conditions, MMB could be readily hydrolyzed by CES1 and release MCB; such biotransformation brought great changes in the electronic properties at the meso position of the fluorophore and triggered a dramatic increase in fluorescence emission around 595 nm. Moreover, MMB was cell membrane permeable and was successfully applied to monitor the real activities of CES1 in various biological samples including living cells, tissue slices, organs, and zebrafish. In summary, this study showed a good example for constructing specific fluorescent probe(s) for a target enzyme and also provided a practical and sensitive tool for real-time sensing of CES1 activities in complicated biological samples. All these findings would strongly facilitate high-throughput screening of CES1 modulators and the studies on CES1-associated physiological and pathological processes.
Collapse
Affiliation(s)
- Zhenhao Tian
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian , 116024 , China
| | - Lele Ding
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian , 116024 , China
| | - Kun Li
- School of Life Science and Medicine , Dalian University of Technology , Panjin , 124221 , China
| | - Yunqing Song
- Institute of Interdisciplinary Integrative Medicine Research , Shanghai University of Traditional Chinese Medicine , Shanghai , 201203 , China
| | - Tongyi Dou
- School of Life Science and Medicine , Dalian University of Technology , Panjin , 124221 , China
| | - Jie Hou
- Dalian Medical University , Dalian , 116044 , China
| | - Xiangge Tian
- Dalian Medical University , Dalian , 116044 , China
| | - Lei Feng
- Dalian Medical University , Dalian , 116044 , China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research , Shanghai University of Traditional Chinese Medicine , Shanghai , 201203 , China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian , 116024 , China
| |
Collapse
|
18
|
Feng L, Yan Q, Zhang B, Tian X, Wang C, Yu Z, Cui J, Guo D, Ma X, James TD. Ratiometric fluorescent probe for sensing Streptococcus mutans glucosyltransferase, a key factor in the formation of dental caries. Chem Commun (Camb) 2019; 55:3548-3551. [PMID: 30843551 DOI: 10.1039/c9cc00440h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report on a naphthalimide ratiometric fluorescent probe for the real-time sensing and imaging of pathogenic bacterial glucosyltransferases, which are associated with the development of dental caries. Using a high-throughput screening method, we identified that several natural polyphenols from green tea were GTFs inhibitors that could eventually lead to suitable oral treatments to prevent the development of dental caries.
Collapse
Affiliation(s)
- Lei Feng
- College of Pharmacy, Academy of Integrative Medicine, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tian Z, Yan Q, Feng L, Deng S, Wang C, Cui J, Wang C, Zhang Z, James TD, Ma X. A far-red fluorescent probe for sensing laccase in fungi and its application in developing an effective biocatalyst for the biosynthesis of antituberculous dicoumarin. Chem Commun (Camb) 2019; 55:3951-3954. [DOI: 10.1039/c9cc01579e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A far-red fluorescent probe for sensing laccase in fungi and its application in developing an effective biocatalyst for the biosynthesis of antituberculous dicoumarin.
Collapse
|