1
|
Zheng D, Liu T, Yu S, Liu Z, Wang J, Wang Y. Antimalarial Mechanisms and Resistance Status of Artemisinin and Its Derivatives. Trop Med Infect Dis 2024; 9:223. [PMID: 39330912 PMCID: PMC11435542 DOI: 10.3390/tropicalmed9090223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Artemisinin is an endoperoxide sesquiterpene lactone isolated from Artemisia annua and is often used to treat malaria. Artemisinin's peroxide bridge is the key structure behind its antimalarial action. Scientists have created dihydroartemisinin, artemether, artesunate, and other derivatives preserving artemisinin's peroxide bridge to increase its clinical utility value. Artemisinin compounds exhibit excellent efficacy, quick action, and minimal toxicity in malaria treatment and have greatly contributed to malaria control. With the wide and unreasonable application of artemisinin-based medicines, malaria parasites have developed artemisinin resistance, making malaria prevention and control increasingly challenging. Artemisinin-resistant Plasmodium strains have been found in many countries and regions. The mechanisms of antimalarials and artemisinin resistance are not well understood, making malaria prevention and control a serious challenge. Understanding the antimalarial and resistance mechanisms of artemisinin drugs helps develop novel antimalarials and guides the rational application of antimalarials to avoid the spread of resistance, which is conducive to malaria control and elimination efforts. This review will discuss the antimalarial mechanisms and resistance status of artemisinin and its derivatives, which will provide a reference for avoiding drug resistance and the research and development of new antimalarial drugs.
Collapse
Affiliation(s)
- Dan Zheng
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Tingting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Zhilong Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
2
|
Biswas B, Shah D, Cox-Vázquez SJ, Vázquez RJ. Sensing cholesterol-induced rigidity in model membranes with time-resolved fluorescence spectroscopy and microscopy. J Mater Chem B 2024; 12:6570-6576. [PMID: 38899544 DOI: 10.1039/d4tb00872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Here, we report the characterization of cholesterol levels on membrane fluidity with a twisted intramolecular charge transfer (TICT) membrane dye, namely DI-8-ANEPPS, using fluorescence lifetime techniques such as time-correlated single photon counting (TCSPC) and fluorescence lifetime imaging microscopy (FLIM). The characterized liposomes comprised a 3 : 1 ratio of POPC and POPG, respectively, 1% DI-8-ANEPPS, and increasing cholesterol levels from 0% to 50%. Fluorescence lifetime characterization revealed that increasing the cholesterol levels from 0% to 50% increases the fluorescence lifetime of DI-8-ANEPPS from 2.36 ns to 3.65 ns, a 55% increment. Such lengthening in the fluorescence lifetime is concomitant with reduced Stokes shifts and higher quantum yield, revealing that localized excitation (LE) dominates over TICT states with increased cholesterol levels. Fluorescence anisotropy measurements revealed a less isotropic environment in the membrane upon increasing cholesterol levels, suggesting a shift from liquid-disorder (Lα) to liquid-order (LO) upon adding cholesterol. Local electrostatic and dipole characterization experiments revealed that changes in the zeta-potential (ζ-potential) and transmembrane dipole potential (Ψd) induced by changes in cholesterol levels or the POPC : POPG ratio play a minimal role in the fluorescence lifetime outcome of DI-8-ANEPPS. Instead, these results indicate that the cholesterol's effect in restricting the degree of movement of DI-8-ANEPPS dominates its photophysics over the cholesterol effect on the local dipole strength. We envision that time-resolved spectroscopy and microscopy, coupled with TICT dyes, could be a convenient tool in exploring the complex interplay between membrane lipids, sterols, and proteins and provide novel insights into membrane fluidity, organization, and function.
Collapse
Affiliation(s)
- Bidisha Biswas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Dhari Shah
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Sarah J Cox-Vázquez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
3
|
Krogman WL, Woodard T, McKay RSF. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels. Anesth Analg 2024; 139:92-106. [PMID: 37968836 DOI: 10.1213/ane.0000000000006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.
Collapse
Affiliation(s)
- William L Krogman
- From the Department of Anesthesiology, University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | | | | |
Collapse
|
4
|
Gunwant V, Gahtori P, Varanasi SR, Pandey R. Protein-Mediated Changes in Membrane Fluidity and Ordering: Insights into the Molecular Mechanism and Implications for Cellular Function. J Phys Chem Lett 2024; 15:4408-4415. [PMID: 38625684 DOI: 10.1021/acs.jpclett.3c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Probing protein-membrane interactions is vital for understanding biological functionality for various applications such as drug development, targeted drug delivery, and creation of functional biomaterials for medical and industrial purposes. In this study, we have investigated interaction of Human Serum Albumin (HSA) with two different lipids, dipalmitoylphosphatidylglycerol (dDPPG) and dipalmitoylphosphatidylcholine (dDPPC), using Vibrational Sum Frequency Generation spectroscopy at different membrane fluidity values. In the liquid-expanded (LE) state of the lipid, HSA (at pH 3.5) deeply intercalated lipid chains through a combination of electrostatic and hydrophobic interactions, which resulted in more ordering of the lipid chains. However, in the liquid-condensed (LC) state, protein intercalation is decreased due to tighter lipid packing. Moreover, our findings revealed distinct differences in HSA's interaction with dDPPG and dDPPC lipids. The interaction with dDPPC remained relatively weak compared to dDPPG. These results shed light on the significance of protein mediated changes in lipid characteristics, which hold considerable implications for understanding membrane protein behavior, lipid-mediated cellular processes, and lipid-based biomaterial design.
Collapse
Affiliation(s)
- Vineet Gunwant
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Preeti Gahtori
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Srinivasa Rao Varanasi
- Department of Physics, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Muscat, Oman
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
5
|
Daza Zapata AM, Álvarez K, Vásquez Duque G, Palacio J, Rojas López M. Janus kinase inhibitors modify the fatty acid profile of extracellular vesicles and modulate the immune response. Heliyon 2024; 10:e24710. [PMID: 38314280 PMCID: PMC10837569 DOI: 10.1016/j.heliyon.2024.e24710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Background Janus kinase inhibitors (jakinibs) are immunomodulators used for treating malignancies, autoimmune diseases, and immunodeficiencies. However, they induce adverse effects such as thrombosis, lymphocytosis, and neutropenia that could be mediated by extracellular vesicles (EVs). These particles are cell membrane-derived structures that transport cellular and environmental molecules and participate in intercellular communication. Jakinibs can modify the content of EVs and enable them to modulate the activity of different components of the immune response. Objective to evaluate the interactions between immune system components of healthy individuals and EVs derived from monocytic and lymphoid lineage cells generated in the presence of baricitinib (BARI) and itacitinib (ITA) and their possible effects. Methods EVs were isolated from monocytes (M) and lymphocytes (L) of healthy individuals, as well as from U937 (U) and Jurkat (J) cells exposed to non-cytotoxic concentrations of BARI, ITA, and dimethyl sulfoxide (DMSO; vehicle control). The binding to and engulfment of EVs by peripheral blood leukocytes of healthy individuals were analyzed by flow cytometry using CFSE-stained EVs and anti-CD45-PeCy7 mAb-labeled whole blood. The effect of EVs on respiratory burst, T-cell activation and proliferation, cytokine synthesis, and platelet aggregation was evaluated. Respiratory burst was assessed in PMA-stimulated neutrophils by the dihydrorhodamine (DHR) test and flow cytometry. T-cell activation and proliferation and cytokine production were assessed in CFSE-stained PBMC cultures stimulated with PHA; expression of the T-cell activation markers CD25 and CD69 and T-cell proliferation were analyzed by flow cytometry, and the cytokine levels were quantified in culture supernatants by Luminex assays. Platelet aggregation was analyzed in platelet-rich plasma (PRP) samples by light transmission aggregometry. The EVs' fatty acid (FA) profile was analyzed using methyl ester derivatization followed by gas chromatography. Results ITA exposure during the generation of EVs modified the size of the EVs released; however, treatment with DMSO and BARI did not alter the size of EVs generated from U937 and Jurkat cells. Circulating neutrophils, lymphocytes, and monocytes showed a 2-fold greater tendency to internalize ITA-U-EVs than their respective DMSO control. The neutrophil respiratory burst was attenuated in greater extent by M-EVs than by L-EVs. Autologous ITA-M-EVs reduced T-cell proliferation by decreasing IL-2 levels and CD25 expression independently of CD69. A higher accumulation of pro-inflammatory cytokines was observed in PHA-stimulated PBMC cultures exposed to M-EVs than to L-EVs; this difference may be related to the higher myristate content of M-EVs. Platelet aggregation increased in the presence of ITA-L/M-EVs by a mechanism presumably dependent on the high arachidonic acid content of the vesicles. Conclusions Cellular origin and jakinib exposure modify the FA profile of EVs, enabling them, in turn, to modulate neutrophil respiratory burst, T-cell proliferation, and platelet aggregation. The increased T-cell proliferation induced by BARI-L/M-EVs could explain the lymphocytosis observed in patients treated with BARI. The higher proportion of arachidonic acid in the FA content of ITA-L/M-EVs could be related to the thrombosis described in patients treated with ITA. EVs also induced a decrease in the respiratory burst of neutrophils.
Collapse
Affiliation(s)
- Ana María Daza Zapata
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Gloria Vásquez Duque
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Juliana Palacio
- Grupo De Investigación Ciencia de Los Materiales, Instituto de Química, Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Colombia
- Universidad Nacional de Colombia,SedeMedellín, Escuela de Química- Carrera 65 A No 59A-110, Medellín, 4309000, Colombia
| | - Mauricio Rojas López
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| |
Collapse
|
6
|
Nandi S, Sarkar N. Interactions between Lipid Vesicle Membranes and Single Amino Acid Fibrils: Probable Origin of Specific Neurological Disorders. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1971-1987. [PMID: 38240221 DOI: 10.1021/acs.langmuir.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Amyloid fibrils are known to be responsible for several neurological disorders, like Alzheimer's disease (AD), Parkinson's disease (PD), etc. For decades, mostly proteins and peptide-based amyloid fibrils have been focused on, and the topic has acknowledged the rise, development, understanding of, and controversy, as well. However, the single amino acid based amyloid fibrils, responsible for several disorders, such as phenylketonuria, tyrosenimia type II, hypermethioninemia, etc., have gotten scientific attention lately. To understand the molecular level pathogenesis of such disorders originated due to the accumulation of single amino acid-based amyloid fibrils, interaction of these fibrils with phospholipid vesicle membranes is found to be an excellent cell-free in vitro setup. Based on such an in vitro setup, these fibrils show a generic mechanism of membrane insertion driven by electrostatic and hydrophobic effects inside the membrane that reduces the integral rigidity of the membrane. Alteration of such fundamental properties of the membrane, therefore, might be referred to as one of the prime pathological factors for the development of these neurological disorders. Hence, such interactions must be investigated in cellular and intracellular compartments to design suitable therapeutic modulators against fibrils.
Collapse
Affiliation(s)
- Sourav Nandi
- Yale School of Medicine, Yale University, New Haven, Connecticut 06510, United States
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
7
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
8
|
Endale HT, Tesfaye W, Mengstie TA. ROS induced lipid peroxidation and their role in ferroptosis. Front Cell Dev Biol 2023; 11:1226044. [PMID: 37601095 PMCID: PMC10434548 DOI: 10.3389/fcell.2023.1226044] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Reactive oxygen species (ROS) play a crucial part in the process of cell death, including apoptosis, autophagy, and ferroptosis. ROS involves in the oxidation of lipids and generate 4-hydroxynonenal and other compounds associated with it. Ferroptosis may be facilitated by lipid peroxidation of phospholipid bilayers. In order to offer novel ideas and directions for the investigation of disorders connected to these processes, we evaluate the function of ROS in lipid peroxidation which ultimately leads to ferroptosis as well as proposed crosstalk mechanisms between ferroptosis and other types programmed cell death.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tiget Ayelgn Mengstie
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Liu J, Lv J, Liu Z, Fang Z, Lai C, Zhao S, Ye M, Wang F. Enhanced Interfacial H-Bond Networks Promote Glycan-Glycan Recognition and Interaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17592-17600. [PMID: 36988558 DOI: 10.1021/acsami.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
H-bond networks at heterogeneous interfaces play crucial roles in bioseparation, biocatalysis, biochip array profiling, and functional nanosystem self-assembly, but their precise modulation and enhancement remain challenging. In this study, we have discovered that interfacial hydrophobic hydration significantly enhances H-bond networks at the interface between a glycan-modified adsorbent and a methanol-water-acetonitrile ternary solution. The enhanced H-bond networks greatly promote the adsorbent-solution heterogeneous glycan-glycan recognition and interaction. This novel hydrophobic hydration-enhanced hydrophilic interaction (HEHI) strategy improves the affinity and efficiency of intact glycopeptide enrichment. Compared with the commonly used hydrophilic-interaction enrichment strategy, 23.5 and 48.5% more intact N- and O-glycopeptides are identified, and the enrichment recoveries of half of the glycopeptides are increased >100%. Further, in-depth profiling of both N- and O-glycosylation occurring on SARS-CoV-2 S1 and hACE2 proteins has been achieved with more glycan types and novel O-glycosylation information involved. Interfacial hydrophobic hydration provides a powerful tool for the modulation of hydrophilic interactions in biological systems.
Collapse
Affiliation(s)
- Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ji Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wong CW, Han HW, Hsu SH. Changes of cell membrane fluidity for mesenchymal stem cell spheroids on biomaterial surfaces. World J Stem Cells 2022; 14:616-632. [PMID: 36157913 PMCID: PMC9453270 DOI: 10.4252/wjsc.v14.i8.616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The therapeutic potential of mesenchymal stem cells (MSCs) in the form of three-dimensional spheroids has been extensively demonstrated. The underlying mechanisms for the altered cellular behavior of spheroids have also been investigated. Cell membrane fluidity is a critically important physical property for the regulation of cell behavior, but it has not been studied for the spheroid-forming cells to date.
AIM To explore the association between cell membrane fluidity and the morphological changes of MSC spheroids on the surface of biomaterials to elucidate the role of membrane fluidity during the spheroid-forming process of MSCs.
METHODS We generated three-dimensional (3D) MSC spheroids on the surface of various culture substrates including chitosan (CS), CS-hyaluronan (CS-HA), and polyvinyl alcohol (PVA) substrates. The cell membrane fluidity and cell morphological change were examined by a time-lapse recording system as well as a high-resolution 3D cellular image explorer. MSCs and normal/cancer cells were pre-stained with fluorescent dyes and co-cultured on the biomaterials to investigate the exchange of cell membrane during the formation of heterogeneous cellular spheroids.
RESULTS We discovered that vesicle-like bubbles randomly appeared on the outer layer of MSC spheroids cultured on different biomaterial surfaces. The average diameter of the vesicle-like bubbles of MSC spheroids on CS-HA at 37 °C was approximately 10 μm, smaller than that on PVA substrates (approximately 27 μm). Based on time-lapse images, these unique bubbles originated from the dynamic movement of the cell membrane during spheroid formation, which indicated an increment of membrane fluidity for MSCs cultured on these substrates. Moreover, the membrane interaction in two different types of cells with similar membrane fluidity may further induce a higher level of membrane translocation during the formation of heterogeneous spheroids.
CONCLUSION Changes in cell membrane fluidity may be a novel path to elucidate the complicated physiological alterations in 3D spheroid-forming cells.
Collapse
Affiliation(s)
- Chui-Wei Wong
- National Taiwan University, Institute of Polymer Science and Engineering, Taipei 10617, Taiwan
| | - Hao-Wei Han
- National Taiwan University, Institute of Polymer Science and Engineering, Taipei 10617, Taiwan
| | - Shan-hui Hsu
- National Taiwan University, Institute of Polymer Science and Engineering, Taipei 10617, Taiwan
- National Health Research Institutes, Institute of Cellular and System Medicine, Miaoli 350, Taiwan
- National Taiwan University, Research and Development Center for Medical Devices, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Nandi S, Mukhopadhyay A, Nandi PK, Bera N, Hazra R, Chatterjee J, Sarkar N. Amyloids Formed by Nonaromatic Amino Acid Methionine and Its Cross with Phenylalanine Significantly Affects Phospholipid Vesicle Membrane: An Insight into Hypermethioninemia Disorder. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8252-8265. [PMID: 35758025 DOI: 10.1021/acs.langmuir.2c00648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The incorrect metabolic breakdown of the nonaromatic amino acid methionine (Met) leads to the disorder called hypermethioninemia via an unknown mechanism. To understand the molecular level pathogenesis of this disorder, we prepared a DMPC lipid membrane, the mimicking setup of the cell membrane, and explored the effect of the millimolar level of Met on it. We found that Met forms toxic fibrillar aggregates that disrupt the rigidity of the membrane bilayer, and increases the dynamic response of water molecules surrounding the membrane as well as the heterogeneity of the membrane. Such aggregates strongly deform red blood cells. This opens the requirement to consider therapeutic antagonists either to resist or to inhibit the toxic amyloid aggregates against hypermethioninemia. Moreover, such disrupting effect on membrane bilayer and cytotoxicity along with deformation effect on RBC by the cross amyloids of Met and Phenylalanine (Phe) was found to be most virulent. This exclusive observation of the enhanced virulent effect of the cross amyloids is expected to be an informative asset to explain the coexistence of two amyloid disorders.
Collapse
|
12
|
Deo N, Redpath G. Serotonin Receptor and Transporter Endocytosis Is an Important Factor in the Cellular Basis of Depression and Anxiety. Front Cell Neurosci 2022; 15:804592. [PMID: 35280519 PMCID: PMC8912961 DOI: 10.3389/fncel.2021.804592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Depression and anxiety are common, debilitating psychiatric conditions affecting millions of people throughout the world. Current treatments revolve around selective serotonin reuptake inhibitors (SSRIs), yet these drugs are only moderately effective at relieving depression. Moreover, up to 30% of sufferers are SSRI non-responders. Endocytosis, the process by which plasma membrane and extracellular constituents are internalized into the cell, plays a central role in the regulation of serotonin (5-hydroxytryptophan, 5-HT) signaling, SSRI function and depression and anxiety pathogenesis. Despite their therapeutic potential, surprisingly little is known about the endocytosis of the serotonin receptors (5-HT receptors) or the serotonin transporter (SERT). A subset of 5-HT receptors are endocytosed by clathrin-mediated endocytosis following serotonin binding, while for the majority of 5-HT receptors the endocytic regulation is not known. SERT internalizes serotonin from the extracellular space into the cell to limit the availability of serotonin for receptor binding and signaling. Endocytosis of SERT reduces serotonin uptake, facilitating serotonin signaling. SSRIs predominantly inhibit SERT, preventing serotonin uptake to enhance 5-HT receptor signaling, while hallucinogenic compounds directly activate specific 5-HT receptors, altering their interaction with endocytic adaptor proteins to induce alternate signaling outcomes. Further, multiple polymorphisms and transcriptional/proteomic alterations have been linked to depression, anxiety, and SSRI non-response. In this review, we detail the endocytic regulation of 5-HT receptors and SERT and outline how SSRIs and hallucinogenic compounds modulate serotonin signaling through endocytosis. Finally, we will examine the deregulated proteomes in depression and anxiety and link these with 5-HT receptor and SERT endocytosis. Ultimately, in attempting to integrate the current studies on the cellular biology of depression and anxiety, we propose that endocytosis is an important factor in the cellular basis of depression and anxiety. We will highlight how a thorough understanding 5-HT receptor and SERT endocytosis is integral to understanding the biological basis of depression and anxiety, and to facilitate the development of a next generation of specific, efficacious antidepressant treatments.
Collapse
Affiliation(s)
- Nikita Deo
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gregory Redpath
- European Molecular Biology Lab (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences and the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Gregory Redpath
| |
Collapse
|
13
|
Pyne A, Nandi S, Layek S, Ghosh M, Nandi PK, Bera N, Sarkar N. Influence of a Polyneurotransmitter on DNA-Mediated Förster-Based Resonance Energy Transfer: A Path Leading to White Light Generation. J Phys Chem B 2021; 125:12637-12653. [PMID: 34784202 DOI: 10.1021/acs.jpcb.1c06836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiologically important biomolecule, dopamine (DA), shows strong self-oxidation and aggregation behaviors, which have been controlled and modulated to result in fluorescent polydopamine (F-PDA) nanoparticles. On the other hand, the simultaneous binding of two diverse deoxyribonucleic acid (DNA) binding probes, 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and ethidium bromide (EtBr), has been elaborately established to follow the Förster-based resonance energy transfer (FRET) pathway. The comparative understanding of this DNA-mediated FRET in three media, phosphate buffer saline (PBS) of pH 7.4, DA, and F-PDA, has concluded that the FRET efficiency in the three media follows the order: PBS > DA > F-PDA. This controlled FRET in the fluorescent F-PDA matrix serves a pivotal role for efficient white light (WL) generation with excellent Commission Internationale de l'Eclairage (CIE) parameters that match well with that of pure WL emission. The obtained WL emission has been shown to be very specific with respect to concentrations of different participating components and the excitation wavelength of the illuminating source. Furthermore, the optical properties of the WL emitting solution have been observed to be retained excellently inside the well-known agarose gel matrix. Finally, the mechanistic pathway behind such a FRET-based WL generation has been established in detail, and to the best of our knowledge, the current study offers the first and only report that discloses the influence of a fluorescent polyneurotransmitter matrix for successful generation of WL emission.
Collapse
Affiliation(s)
- Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
14
|
Shin J, Li S. Tuning lipid layer formation on particle surfaces by using DNA-containing recruiter molecules. Colloids Surf B Biointerfaces 2021; 208:112084. [PMID: 34481246 DOI: 10.1016/j.colsurfb.2021.112084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Biofunctional interfaces containing DNA-conjugated molecules have been explored for various bioengineering applications. However, there is still a lack of understanding of the interaction between DNA conjugates and surrounding biomolecules. In this study, we prepare DNA-containing recruiter molecules and incorporate them onto DNA immobilized gold nanoparticles through DNA hybridization. Liposomes composed of different phospholipids are then applied to investigate supported lipid layer formation on these recruiter-containing surfaces. We find that the morphology and the amount of lipid layers formed are determined by both the liposome concentration and the type of recruiter molecule. When liposomes are applied in excess above a critical concentration, surface chemistry determines the lipid layers formed, leading to lipid multilayers on hydrophilic DNA recruiter containing surfaces and lipid monolayers on hydrophobic DNA-lipid recruiter containing surfaces. When the liposome concentration is below the critical value, the surface molecules take on a more direct role and recruit lipids through hydrophobic interaction. The total amount of the lipid layers formed is further modulated by the overall charge and the fluidity of the liposomes applied. These results provide quantitative analysis on the interaction of DNA conjugates with lipid molecules and introduce a new approach to fine-tune lipid layer formation behavior.
Collapse
Affiliation(s)
- Jeehae Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea.
| |
Collapse
|
15
|
Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Lin C, Katla SK, Pérez-Mercader J. Photochemically induced cyclic morphological dynamics via degradation of autonomously produced, self-assembled polymer vesicles. Commun Chem 2021; 4:25. [PMID: 36697697 PMCID: PMC9814595 DOI: 10.1038/s42004-021-00464-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 01/28/2023] Open
Abstract
Autonomous and out-of-equilibrium vesicles synthesised from small molecules in a homogeneous aqueous medium are an emerging class of dynamically self-assembled systems with considerable potential for engineering natural life mimics. Here we report on the physico-chemical mechanism behind a dynamic morphological evolution process through which self-assembled polymeric structures autonomously booted from a homogeneous mixture, evolve from micelles to giant vesicles accompanied by periodic growth and implosion cycles when exposed to oxygen under light irradiation. The system however formed nano-objects or gelation under poor oxygen conditions or when heated. We determined the cause to be photoinduced chemical degradation within hydrated polymer cores inducing osmotic water influx and the subsequent morphological dynamics. The process also led to an increase in the population of polymeric objects through system self-replication. This study offers a new path toward the design of chemically self-assembled systems and their potential application in autonomous material artificial simulation of living systems.
Collapse
Affiliation(s)
- Chenyu Lin
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Sai Krishna Katla
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States.
- The Santa Fe Institute, Santa Fe, NM, United States.
| |
Collapse
|
17
|
Kundu S, Malik S, Ghosh M, Nandi S, Pyne A, Debnath A, Sarkar N. A Comparative Study on DMSO-Induced Modulation of the Structural and Dynamical Properties of Model Bilayer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2065-2078. [PMID: 33529530 DOI: 10.1021/acs.langmuir.0c03037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modulating the structures and properties of biomembranes via permeation of small amphiphilic molecules is immensely important, having diverse applications in cell biology, biotechnology, and pharmaceuticals, because their physiochemical and biological interactions lead to new pathways for transdermal drug delivery and administration. In this work, we have elucidated the role of dimethyl sulfoxide (DMSO), broadly used as a penetration-enhancing agent and cryoprotective agent on model lipid membranes, using a combination of fluorescence microscopy and time-resolved fluorescence spectroscopy. Spatially resolved fluorescence lifetime imaging microscopy (FLIM) has been employed to unravel how the fluidity of the DMSO-induced bilayer regulates the structural alteration of the vesicles. Moreover, we have also shown that the dehydration effect of DMSO leads to weakening of the hydrogen bond between lipid headgroups and water molecules and results in faster solvation dynamics as demonstrated by femtosecond time-resolved fluorescence spectroscopy. It has been gleaned that the water dynamics becomes faster because bilayer rigidity decreases in the presence of DMSO, which is also supported by time-resolved rotational anisotropy measurements. The enhanced diffusivity and increased membrane fluidity in the presence of DMSO are further ratified at the single-molecule level through fluorescence correlation spectroscopy (FCS) measurements. Our results indicate that while the presence of DMSO significantly affects the 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-rac-glycero-3-phosphatidylcholine (DPPC) bilayers, it has a weak effect on 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) vesicles, which might explain the preferential interaction of DMSO with the positively charged choline group present in DMPC and DPPC vesicles. The experimental findings have also been further verified with molecular dynamics simulation studies. Moreover, it has been observed that DMSO is likely to have a differential effect on heterogeneous bilayer membranes depending on the structure and composition of their headgroups. Our results illuminate the importance of probing the lipid structure and composition of cellular membranes in determining the effects of cryoprotective agents.
Collapse
Affiliation(s)
- Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sheeba Malik
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
18
|
Mondal D, Malik S, Banerjee P, Kundu N, Debnath A, Sarkar N. Modulation of Membrane Fluidity to Control Interfacial Water Structure and Dynamics in Saturated and Unsaturated Phospholipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12423-12434. [PMID: 33035065 DOI: 10.1021/acs.langmuir.0c02736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The structure and dynamics of interfacial water in biological systems regulate the biochemical reactions. But, it is still enigmatic how the behavior of the interfacial water molecule is controlled. Here, we have investigated the effect of membrane fluidity on the structure and dynamics of interfacial water molecules in biologically relevant phopholipid vesicles. This study delineates that modulation of membrane fluidity through interlipid separation and unsaturation not only mitigate membrane rigidity but also disrupt the strong hydrogen bond (H-bond) network around the lipid bilayer interface. As a result, a disorder in H-bonding between water molecules arises several layers beyond the first hydration shell of the polar headgroup, which essentially modifies the interfacial water structure and dynamics. Furthermore, we have also provided evidence of increasing transportation through these modulated membranes, which enhance the membrane mediated isomerization reaction rate.
Collapse
Affiliation(s)
- Dipankar Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302, West Bengal, India
| | - Sheeba Malik
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302, West Bengal, India
| | - Niloy Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302, West Bengal, India
- Environment Research Group, R&D and Scientific Services Department, Tata Steel Ltd., Jamshedpur 831007, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302, West Bengal, India
| |
Collapse
|
19
|
Kundu N, Mondal D, Sarkar N. Dynamics of the vesicles composed of fatty acids and other amphiphile mixtures: unveiling the role of fatty acids as a model protocell membrane. Biophys Rev 2020; 12:1117-1131. [PMID: 32926295 PMCID: PMC7575682 DOI: 10.1007/s12551-020-00753-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/03/2020] [Indexed: 01/31/2023] Open
Abstract
Fundamental research at the interface of chemistry and biology has the potential to shine light on the question of how living cells can be synthesized from inanimate matter thereby providing plausible pathways for the emergence of cellular life. Compartmentalization of different biochemical reactions within a membrane bound water environment is considered an essential first step in any origin of life pathway. It has been suggested that fatty acid-based vesicles can be considered a model protocell having the potential for change via Darwinian evolution. As such, protocell models have the potential to assist in furthering our understanding of the origin of life in the laboratory. Fatty acids, both by themselves and in mixtures with other amphiphiles, can form different self-assembled structures depending on their surroundings. Recent studies of fatty acid-based membranes have suggested likely pathways of protocell growth, division and membrane permeabilisation for the transport of different nutrients, such as nucleotides across the membrane. In this review, different dynamic processes related to the growth and division of the protocell membrane are discussed and possible pathways for transition of the protocell to the modern cell are explored. These areas of research may lead to a better understanding of the synthesis of artificial cell-like entities and thus herald the possibility of creating new form of life distinct from existing biology. Graphical Abstract Table of Content (TOC) only.
Collapse
Affiliation(s)
- Niloy Kundu
- Environment Research Group, R&D Department, Tata Steel Ltd, Jamshedpur, 831007, India.
| | - Dipankar Mondal
- Institute for System Genetics and Department of Cell Biology, New York University, Langone Medical Center, New York, 10016, USA
- Department of Chemistry, Indian Institute of Technology, Kharagpur, WB, 721302, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, WB, 721302, India
| |
Collapse
|
20
|
Banerjee P, Mondal D, Ghosh M, Mukherjee D, Nandi PK, Maiti TK, Sarkar N. Selective Self-Assembly of 5-Fluorouracil through Nonlinear Solvent Response Modulates Membrane Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2707-2719. [PMID: 32097563 DOI: 10.1021/acs.langmuir.9b03544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controllable self-assembly and understanding of the interaction between single metabolite fibrils and live-cell membranes have paramount importance in providing minimal treatment in several neurodegenerative disorders. Here, utilizing the nonlinear nature and peculiar hydrogen bonding behavior of the dimethyl sulfoxide (DMSO)-water mixture, the selective self-assembly of a single metabolite 5-fluorouracil (5-FU) is achieved. A direct correlation between water availability and selective self-assembly of 5-FU is ratified from the excited-state dynamics. The specific fibrillar structures of 5-FU exhibit a great potential to modulate live cell membrane fluidity and model membrane lipid distribution. After 5-FU fibril addition, a disorder of H-bonded water molecules arises several layers beyond the first hydration shell of the polar headgroups, which essentially modifies interfacial water structure and dynamics. Overall, our results shed light on the role of solvent to govern specific self-assembly and also lay the foundation accounting for the earlier stage of several diseases and multidrug resistance.
Collapse
Affiliation(s)
- Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Dipankar Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Devdeep Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
21
|
Nandi S, Pyne A, Ghosh M, Banerjee P, Ghosh B, Sarkar N. Antagonist Effects of l-Phenylalanine and the Enantiomeric Mixture Containing d-Phenylalanine on Phospholipid Vesicle Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2459-2473. [PMID: 32073868 DOI: 10.1021/acs.langmuir.9b03543] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the congenital flaws of metabolism, phenylketonuria (PKU), is known to be related to the self-assembly of toxic fibrillar aggregates of phenylalanine (Phe) in blood at elevated concentrations. Our experimental findings using l-phenylalanine (l-Phe) at millimolar concentration suggest the formation of fibrillar morphologies in the dry phase, which in the solution phase interact strongly with the model membrane composed of 1,2-diacyl-sn-glycero-phosphocholine (LAPC) lipid, thereby decreasing the rigidity (or increasing the fluidity) of the membrane. The hydrophobic interaction, in addition to the electrostatic attraction of Phe with the model membrane, is found to be responsible for such phenomena. On the contrary, various microscopic observations reveal that such fibrillar morphologies of l-Phe are severely ruptured in the presence of its enantiomer d-phenylalanine (d-Phe), thereby converting the fibrillar morphologies into crushed flakes. Various biophysical studies, including the solvation dynamics experiment, suggest that this l-Phe in the presence of d-Phe, when interacting with the same model membrane, now reverts the rigidity of the membrane, i.e., increases the rigidity of the membrane, which was lost due to interaction with l-Phe exclusively. Fluorescence anisotropy measurements also support this reverse rigid character of the membrane in the presence of an enantiomeric mixture of amino acids. A comprehensive understanding of the interaction of Phe with the model membrane is further pursued at the single-molecular fluorescence detection level using fluorescence correlation spectroscopy (FCS) experiments. Therefore, our experimental conclusion interprets a linear correlation between increased permeability and enhanced fluidity of the membrane in the presence of l-Phe and certifies d-Phe as a therapeutic modulator of l-Phe fibrillar morphologies. Further, the study proposes that the rigidity of the membrane lost due to interaction with l-Phe was reinstated-in fact, increased-in the presence of the enantiomeric mixture containing both d- and l-Phe.
Collapse
|
22
|
Spectroscopic investigation on alteration of dynamic properties of lipid membrane in presence of Gamma-Aminobutyric Acid (GABA). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|