1
|
Chen HY, Xi CY, Xu HB, Ye MJ, He Y, Chen BB, Li DW. Reaction-Based SERS Probes for the Detection of Raman-Inactive Species. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67134-67154. [PMID: 39604209 DOI: 10.1021/acsami.4c16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has the advantages of high sensitivity, low water interference, narrow spectral peaks for multicomponent analysis, and rich molecular fingerprint information, presenting great potential to be a robust analytical technology. However, a key issue is the unavailability in directly detecting Raman-inactive species with a small Raman scattering cross-section. Current research has addressed this issue by using specific chemical reactions to induce significant characteristic changes in SERS signals, enabling the sensitive and selective detection of Raman-inactive species. This reaction-activated SERS sensing strategy provides a clever approach to the precise determination of Raman-inactive species. In this review, we have first summarized the design principles and types of reaction-based SERS probes. Furthermore, we have examined the enormous potential of reaction-based SERS probes in the detection of bioactive species, environmental pollutants, and food contaminants. Finally, we have discussed in depth the challenges and prospects of reaction-based SERS probes on stability, reliability, and intelligence. The review is aimed to inspire a more advanced design of reaction-based SERS probes, thus further facilitating their extensive applications in SERS analysis.
Collapse
Affiliation(s)
- Hua-Ying Chen
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng-Ye Xi
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming-Jie Ye
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue He
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Li Y, Jiang G, Wan Y, Dauda SAA, Pi F. Tailoring strategies of SERS tags-based sensors for cellular molecules detection and imaging. Talanta 2024; 276:126283. [PMID: 38776777 DOI: 10.1016/j.talanta.2024.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
As an emerging nanoprobe, surface enhanced Raman scattering (SERS) tags hold significant promise in sensing and bioimaging applications due to their attractive merits of anti-photobleaching ability, high sensitivity and specificity, multiplex, and low background capabilities. Recently, several reviews have proposed the application of SERS tags in different fields, however, the specific sensing strategies of SERS tags-based sensors for cellular molecules have not yet been systematically summarized. To provide beneficial and comprehensive insights into the advanced SERS tags technique at the cellular level, this review systematically elaborated on the latest advances in SERS tags-based sensors for cellular molecules detection and imaging. The general SERS tags-based sensing strategies for biomolecules and ions were first introduced according to molecular classes. Then, aiming at such molecules located in the extracellular, cellular membrane and intracellular regions, the tailored strategies by designing and manipulating SERS tags were summarized and explored through several key examples. Finally, the challenges and perspectives of developing high performance of advanced SERS tags were briefly discussed to provide effective guidance for further development and extended applications.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sa-Adu Abiola Dauda
- School of Allied Health Sciences, University for Development Studies, P.O. Box 1883, Tamale, Ghana
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
3
|
Vardaki MZ, Gregoriou VG, Chochos CL. Biomedical applications, perspectives and tag design concepts in the cell - silent Raman window. RSC Chem Biol 2024; 5:273-292. [PMID: 38576725 PMCID: PMC10989507 DOI: 10.1039/d3cb00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
Spectroscopic studies increasingly employ Raman tags exhibiting a signal in the cell - silent region of the Raman spectrum (1800-2800 cm-1), where bands arising from biological molecules are inherently absent. Raman tags bearing functional groups which contain a triple bond, such as alkyne and nitrile or a carbon-deuterium bond, have a distinct vibrational frequency in this region. Due to the lack of spectral background and cell-associated bands in the specific area, the implementation of those tags can help overcome the inherently poor signal-to-noise ratio and presence of overlapping Raman bands in measurements of biological samples. The cell - silent Raman tags allow for bioorthogonal imaging of biomolecules with improved chemical contrast and they have found application in analyte detection and monitoring, biomarker profiling and live cell imaging. This review focuses on the potential of the cell - silent Raman region, reporting on the tags employed for biomedical applications using variants of Raman spectroscopy.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Vasilis G Gregoriou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| | - Christos L Chochos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| |
Collapse
|
4
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
5
|
Sun Y, Zheng X, Wang H, Yan M, Chen Z, Yang Q, Shao Y. Research advances of SERS analysis method based on silent region molecules for food safety detection. Mikrochim Acta 2023; 190:387. [PMID: 37700165 DOI: 10.1007/s00604-023-05968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Food safety is a critical issue that is closely related to people's health and safety. As a simple, rapid, and sensitive detection technique, surface-enhanced Raman scattering (SERS) technology has significant potential for food safety detection. Recently, researchers have shown a growing interest in utilizing silent region molecules for SERS analysis. These molecules exhibit significant Raman scattering peaks in the cellular Raman silent region between 1800 and 2800 cm-1 avoiding overlapping with the SERS spectrum of biological matrices in the range 600-1800 cm-1, which could effectively circumvent matrix effects and improve the SERS accuracy. In this review, the application of silent region molecules-based SERS analytical technique for food safety detection is introduced, detection strategies including label-free detection and labeled detection are discussed, and recent applications of SERS analysis technology based on molecules containing alkyne and nitrile groups, as well as Prussian blue (PB) in the detection of pesticides, mycotoxins, metal ions, and foodborne pathogens are highlighted. This review aims to draw the attention to the silent region molecules-based SERS analytical technique and to provide theoretical support for its further applications in food safety detection.
Collapse
Affiliation(s)
- Yuhang Sun
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xinxin Zheng
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Hao Wang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mengmeng Yan
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zilei Chen
- Institution of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qinzheng Yang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China.
| | - Yong Shao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| |
Collapse
|
6
|
Sakla R, Ghosh A, Kumar V, Kanika, Das P, Sharma PK, Khan R, Jose DA. Light activated simultaneous release and recognition of biological signaling molecule carbon monoxide (CO). Methods 2023; 210:44-51. [PMID: 36642393 DOI: 10.1016/j.ymeth.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The therapeutic action of carbon monoxide (CO) is very well known and has been studied on various types of tissues and animals. However, real-time spatial and temporal tracking and release of CO is still a challenging task. This paper reported an amphiphilic CO sensing probe NP and phospholipid 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) based nanoscale vesicular sensing system Ves-NP consisting of NP. The liposomal sensing system (Ves-NP) showed good selectivity and sensitivity for CO without any interference from other relevant biological analytes. Detection of CO is monitored by fluorescence OFF-ON signal. Ves-NP displayed LOD of 5.94 µM for CO detection with a response time of 5 min. Further, in a novel attempt, Ves-NP is co-embedded with the amphiphilic CO-releasing molecule 1-Mn(CO)3 to make an analyte replacement probe Ves-NP-CO. Having a both CO releasing and sensing moiety at the surface of the same liposomal system Ves-NP-CO play a dual role. Ves-NP-CO is used for the simultaneous release and recognition of CO that can be controlled by light. Thus, in this novel approach, for the first time we have attached both the release and recognition units of CO in the vesicular surface, both release and recognition simultaneously monitored by the change in fluorescent OFF-ON signal.
Collapse
Affiliation(s)
- Rahul Sakla
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India; Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Amrita Ghosh
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Vinod Kumar
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Tamil Nadu, India
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - D Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India.
| |
Collapse
|
7
|
Chen S, Fan J, Lv M, Hua C, Liang G, Zhang S. Internal Standard Assisted Surface-Enhanced Raman Scattering Nanoprobe with 4-NTP as Recognition Unit for Ratiometric Imaging Hydrogen Sulfide in Living Cells. Anal Chem 2022; 94:14675-14681. [PMID: 36222749 DOI: 10.1021/acs.analchem.2c02961] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen sulfide (H2S), as the third endogenous gasotransmitter, is closely associated with various physiological and pathological processes, whereas many aspects of its functions remain unclear. Effective tools for the accurate detection of H2S in living organisms are urgently needed. We herein reported an internal standard assisted surface-enhanced Raman scattering (SERS) nanoprobe for ratiometric detection of H2S in vitro and in living cells based on the reduction of nitros with H2S. This nanoprobe consists of an internal standard (4-mercaptobenzonitrile, MPBN) embedded core-molecule-shell Au nanoflower (Au@MPBN@Au) as the high plasmonic active SERS substrate and the 4-nitrothiophenol (4-NTP) molecule immobilized on the surface as the H2S recognition unit. With the addition of H2S, the nitros peak (1329 cm-1) decreased. Meanwhile, three obvious new peaks appeared at 1139, 1387, and 1433 cm-1, which were related to the vibration of the dimerized product 4,4'-dimercaptoazobisbenzene (DMAB) of 4-aminothiophenol (4-ATP). However, the peak intensity at 2223 cm-1 derived from MPBN was not influenced by the outer environment. Thus, the H2S level was able to be determined based on the ratio of two peak intensities (I1139/I2223) with a detection limit as low as 0.24 μM. Notably, we have proved that SERS nanoprobe Au@MPBN@Au@4-NTP could ratiometrically image both the endogenous and exogenous H2S in living cells. We anticipate that Au@MPBN@Au@4-NTP could be applied for the study of H2S-related physiological function in the future.
Collapse
Affiliation(s)
- Sheng Chen
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China.,Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jiayi Fan
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Mengya Lv
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Chenfeng Hua
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, 2 Fengyang Street, Zhengzhou 450001, China
| | - Gaolin Liang
- Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Shusheng Zhang
- Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| |
Collapse
|
8
|
Shi L, Liu M, Zhang L, Tian Y. A Liquid Interfacial SERS Platform on a Nanoparticle Array Stabilized by Rigid Probes for the Quantification of Norepinephrine in Rat Brain Microdialysates. Angew Chem Int Ed Engl 2022; 61:e202117125. [PMID: 35238468 DOI: 10.1002/anie.202117125] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 12/31/2022]
Abstract
For the reliable determination of trace chemicals in the brain, we created a SERS platform based on a functionalized AuNPs array formed at a liquid/liquid interface in a uniform fashion over a large substrate area through ternary regulations for real-time quantification of trace norepinephrine (NE). The rigid molecule, 4-(thiophen-3-ylethynyl)-benzaldehyde (RP1) was designed and co-assembled at AuNPs with 4-mercaptophenylboronic acid (MPBA) to chemically define NE via dual recognition. Meanwhile, the rigid structure assembly of RP1 and MPBA efficiently fixed the interparticle gap, guaranteeing reproducible SERS analysis. Furthermore, the Raman peak of C≡C group in the silent region was taken as a response element to further improve the accuracy. Combined with microdialysis, this SERS platform was developed for in-the-field testing of NE in rat brain microdialysates following anxiety.
Collapse
Affiliation(s)
- Lu Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
9
|
Shi L, Liu M, Zhang L, Tian Y. A Liquid Interfacial SERS Platform on a Nanoparticle Array Stabilized by Rigid Probes for the Quantification of Norepinephrine in Rat Brain Microdialysates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lu Shi
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 201100 shanghai CHINA
| | - Mengmeng Liu
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 shanghai CHINA
| | - Limin Zhang
- East China Normal University School of Chemistry and Molecular Engineering Dongchuan Road 500 201100 shanghai CHINA
| | - Yang Tian
- East China Normal University Dept. of Chemistry Dongchuan Road 500 200062 Shanghai CHINA
| |
Collapse
|
10
|
Wen C, Wang L, Liu L, Shen XC, Chen H. Surface-enhanced Raman probes based on gold nanomaterials for in vivo diagnosis and imaging. Chem Asian J 2022; 17:e202200014. [PMID: 35178878 DOI: 10.1002/asia.202200014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has received considerable attention from researchers due to its high molecular specificity, high sensitivity, non-invasive and multiplexing. Recently, various metal substrates have been exploited for SERS analysis and imaging. Among them, gold nanomaterials are important SERS substrates with outstanding surface plasmon resonance effects, structural adjustability and good biocompatibility, making them widely used in biomedical diagnosis and clinical fields. In this minireview, we discuss the latest progress about the application of gold-based nanomaterials as SERS probes in biomedical research, primarily for in vivo disease diagnosis and imaging. This review mainly includes the basic shapes and morphologies of gold based SERS probes, such as gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanostars (AuNSs), as well as other gold nanostructures. Finally, a brief outlook for the future development of SERS technique in the context of efficient diagnostics and therapy guidance is provided. We hope that this minireview will facilitate the design and future development of Surface-enhanced Raman probes based on gold nanomaterials.
Collapse
Affiliation(s)
| | | | - Li Liu
- Guangxi Normal University, chemistry, CHINA
| | | | - Hua Chen
- Guangxi Normal University, school of chemistry, 15 Yucai Road, 541004, Guilin, CHINA
| |
Collapse
|
11
|
Lee SH, Kim S, Yang JY, Mun C, Lee S, Kim SH, Park SG. Hydrogel-Assisted 3D Volumetric Hotspot for Sensitive Detection by Surface-Enhanced Raman Spectroscopy. Int J Mol Sci 2022; 23:ijms23021004. [PMID: 35055189 PMCID: PMC8779965 DOI: 10.3390/ijms23021004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Effective hotspot engineering with facile and cost-effective fabrication procedures is critical for the practical application of surface-enhanced Raman spectroscopy (SERS). We propose a SERS substrate composed of a metal film over polyimide nanopillars (MFPNs) with three-dimensional (3D) volumetric hotspots for this purpose. The 3D MFPNs were fabricated through a two-step process of maskless plasma etching and hydrogel encapsulation. The probe molecules dispersed in solution were highly concentrated in the 3D hydrogel networks, which provided a further enhancement of the SERS signals. SERS performance parameters such as the SERS enhancement factor, limit-of-detection, and signal reproducibility were investigated with Cyanine5 (Cy5) acid Raman dye solutions and were compared with those of hydrogel-free MFPNs with two-dimensional hotspots. The hydrogel-coated MFPNs enabled the reliable detection of Cy5 acid, even when the Cy5 concentration was as low as 100 pM. We believe that the 3D volumetric hotspots created by introducing a hydrogel layer onto plasmonic nanostructures demonstrate excellent potential for the sensitive and reproducible detection of toxic and hazardous molecules.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - Sunho Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Jun-Yeong Yang
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - ChaeWon Mun
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - Seunghun Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
- Correspondence: (S.-H.K.); (S.-G.P.)
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
- Correspondence: (S.-H.K.); (S.-G.P.)
| |
Collapse
|
12
|
Liu XP, Zhang WS, Wang YN, Ye WQ, Xu ZR. In situ monitoring PUVA therapy by using a cell-array chip-based SERS platform. Anal Chim Acta 2022; 1189:339224. [PMID: 34815036 DOI: 10.1016/j.aca.2021.339224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022]
Abstract
Psoralen ultraviolet A (PUVA) therapy has thrived as a promising treatment for psoriasis. However, overdose of PUVA treatment will cause side-effects, such as melanoma formation. And these side-effects are often ignored during PUVA therapy. Hence, in situ monitoring therapeutic response of PUVA therapy is important to minimize side-effects. Aberrant expression of tyrosinase (TYR) has been proved to be associated with melanoma, indicating that TYR is a potential target for evaluation of PUVA therapy. Herein, we reported a strategy for in situ monitoring TYR activity during PUVA therapy by using a cell-array chip-based SERS platform. The cell-array chip was used to simulate cell survival environment for cell culture. Capture of single cells and living cell analysis were realized in the isolated microchambers. An enzyme-induced core-shell self-assembly substrate was used to evaluate TYR activity in living cells during PUVA therapy. The gold nanoparticle modified with a SERS reporter, 4-mercaptobenzonitrile (4-MBN), was used as the core. In the presence of oxygen and TYR, hydroxylation of l-tyrosine occurred, leading to the reduction of silver ion on the surface of gold cores. The growth of silver shells was accompanied by the increased SERS intensity of the reporter, which is related directly to TYR activity. The detection limit for TYR activity is 0.45 U/mL. Upregulation of TYR activity was successfully monitored after PUVA therapy. Notably, real-time and in situ information of therapeutic response can be obtained through monitoring PUVA therapy by using a cell-array chip-based SERS platform, which has great potential to guide the clinical application of PUVA therapy.
Collapse
Affiliation(s)
- Xiao-Peng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wen-Shu Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Ya-Ning Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wen-Qi Ye
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
13
|
Wu G, Li W, Du W, Yue A, Zhao J, Liu D. In-situ monitoring of nitrile-bearing pesticide residues by background-free surface-enhanced Raman spectroscopy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Neto BAD, Correa JR, Spencer J. Fluorescent Benzothiadiazole Derivatives as Fluorescence Imaging Dyes: A Decade of New Generation Probes. Chemistry 2021; 28:e202103262. [PMID: 34643974 DOI: 10.1002/chem.202103262] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 01/13/2023]
Abstract
The current review describes advances in the use of fluorescent 2,1,3-benzothiadiazole (BTD) derivatives after nearly one decade since the first description of bioimaging experiments using this class of fluorogenic dyes. The review describes the use of BTD-containing fluorophores applied as, inter alia, bioprobes for imaging cell nuclei, mitochondria, lipid droplets, sensors, markers for proteins and related events, biological processes and activities, lysosomes, plasma membranes, multicellular models, and animals. A number of physicochemical and photophysical properties commonly observed for BTD fluorogenic structures are also described.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - John Spencer
- Department of Chemistry, University of Sussex School of Life Sciences, Falmer, Brighton, BN1 9QJ, U.K
| |
Collapse
|
15
|
Bakthavatsalam S, Dodo K, Sodeoka M. A decade of alkyne-tag Raman imaging (ATRI): applications in biological systems. RSC Chem Biol 2021; 2:1415-1429. [PMID: 34704046 PMCID: PMC8496067 DOI: 10.1039/d1cb00116g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Alkyne functional groups have Raman signatures in a region (1800 cm-1 to 2800 cm-1) that is free from interference from cell components, known as the "silent region", and alkyne signals in this region were first utilized a decade ago to visualize the nuclear localization of a thymidine analogue EdU. Since then, the strategy of Raman imaging of biological samples by using alkyne functional groups, called alkyne-tag Raman imaging (ATRI), has become widely used. This article reviews the applications of ATRI in biological samples ranging from organelles to whole animal models, and briefly discusses the prospects for this technique.
Collapse
Affiliation(s)
- Subha Bakthavatsalam
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research Wako Saitama 351-0198 Japan
| | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research Wako Saitama 351-0198 Japan
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research Wako Saitama 351-0198 Japan
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
16
|
Holden L, Burke CS, Cullinane D, Keyes TE. Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chem Biol 2021; 2:1021-1049. [PMID: 34458823 PMCID: PMC8341117 DOI: 10.1039/d1cb00049g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Transition metal luminophores are emerging as important tools for intracellular imaging and sensing. Their putative suitability for such applications has long been recognised but poor membrane permeability and cytotoxicity were significant barriers that impeded early progress. In recent years, numerous effective routes to overcoming these issues have been reported, inspired in part, by advances and insights from the pharmaceutical and drug delivery domains. In particular, the conjugation of biomolecules but also other less natural synthetic species, from a repertoire of functional motifs have granted membrane permeability and cellular targeting. Such motifs can also reduce cytotoxicity of transition metal complexes and offer a valuable avenue to circumvent such problems leading to promising metal complex candidates for application in bioimaging, sensing and diagnostics. The advances in metal complex probes permeability/targeting are timely, as, in parallel, over the past two decades significant technological advances in luminescence imaging have occurred. In particular, super-resolution imaging is enormously powerful but makes substantial demands of its imaging contrast agents and metal complex luminophores frequently possess the photophysical characteristics to meet these demands. Here, we review some of the key vectors that have been conjugated to transition metal complex luminophores to promote their use in intra-cellular imaging applications. We evaluate some of the most effective strategies in terms of membrane permeability, intracellular targeting and what impact these approaches have on toxicity and phototoxicity which are important considerations in a luminescent contrast or sensing agent.
Collapse
Affiliation(s)
- Lorcan Holden
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Christopher S Burke
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - David Cullinane
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| |
Collapse
|
17
|
Qiu C, Cheng Z, Lv C, Wang R, Yu F. Development of bioorthogonal SERS imaging probe in biological and biomedical applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Zhao Y, Jing X, Zheng F, Liu Y, Fan Y. Surface-Enhanced Raman Scattering-Active Plasmonic Metal Nanoparticle-Persistent Luminescence Material Composite Films for Multiple Illegal Dye Detection. Anal Chem 2021; 93:8945-8953. [PMID: 34125523 DOI: 10.1021/acs.analchem.1c01442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Uniform two-dimensional plasmonic nanoparticle (NP)-semiconductor composite films could retard the attenuation of electromagnetic evanescent wave and show intensive Raman activity for the multiplex monitoring of hazards in a practical food matrix. Here, an efficient Raman platform is developed by employing a plasmonic nanoparticle (NP)-persistent luminescence material (PLM) composite film. PLM show upconversion photoluminescence (UCPL) properties. The emitted photons are absorbed by plasmonic NPs, which further boost the surface plasmon resonance for the generation of high polarizability and induce strong electromagnetic strength for surface-enhanced Raman scattering (SERS) enhancement. A UCPL-assisted SERS-enhanced mechanism is proposed and verified. A plasmonic NP-PLM film with superior SERS activity and detection capability becomes an alternative candidate for the sensitive and multiple detection of illegal addition of dyes in a food matrix. The proposed UCPL-assisted SERS-enhanced mechanism provides promising future directions to this end to design a next-generation SERS-active plasmonic NP-PLM composite film for the specific detection in complex samples.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaohui Jing
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fangjie Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yangmei Liu
- Jiangsu Institute of Product Quality Supervision and Inspection, Nanjing, Jiangsu 21007, China
| | - Ying Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
19
|
Bi Y, Di H, Zeng E, Li Q, Li W, Yang J, Liu D. Reliable Quantification of pH Variation in Live Cells Using Prussian Blue-Caged Surface-Enhanced Raman Scattering Probes. Anal Chem 2020; 92:9574-9582. [PMID: 32600040 DOI: 10.1021/acs.analchem.0c00714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intracellular pH is an important parameter that is highly associated with diverse physiological processes. The reliable measurement of pH values inside cells remains a formidable challenge because of the complexity of cytoplasm. Herein, we report a robust Prussian blue (PB)-caged pH-responsive surface-enhanced Raman scattering (SERS) probe for precisely mapping the dynamic pH values in live cells. The PB shell has a subnanoscale porous structure that allows only very small biospecies such as H+ or OH- to pass freely through the shell and react with the encased pH-responsive SERS probe, while physically resisting the entry of large biomolecules. This probe achieved unmatched detection linearity (R2 > 0.999) for pH measurements in diverse complex biological samples. Moreover, the nitrile (C≡N) in PB shows a sharp band in the cellular Raman-silent region, which serves as a background-free internal standard for accurate profiling of the probe distribution inside the cells. We applied the proposed probe to monitor the dynamic pH changes during cellular autophagy induced by different stimuli and thereby demonstrated that the PB-caged probe can reliably quantify subtle intracellular pH variations, providing an effective tool for revealing the relationship between abnormal intracellular pH and cellular functions.
Collapse
Affiliation(s)
- Yingna Bi
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Huixia Di
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Erzao Zeng
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Qiang Li
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Wenshuai Li
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Jie Yang
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Wallace GQ, Masson JF. From single cells to complex tissues in applications of surface-enhanced Raman scattering. Analyst 2020; 145:7162-7185. [DOI: 10.1039/d0an01274b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This tutorial review explores how three of the most common methods for introducing nanoparticles to single cells for surface-enhanced Raman scattering measurements can be adapted for experiments with complex tissues.
Collapse
Affiliation(s)
- Gregory Q. Wallace
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| | - Jean-François Masson
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| |
Collapse
|