1
|
Zhou Y, Zhang J, Sun S, Chen W, Wang Y, Shi H, Yang R, Qing Z. Amplified Biosensors Powered by Endogenous Molecules for Intracellular Fluorescence Imaging. Anal Chem 2024; 96:8078-8090. [PMID: 38622818 DOI: 10.1021/acs.analchem.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Affiliation(s)
- Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Jun Zhang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Shuanghong Sun
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Weiju Chen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Yuping Wang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Huiqiu Shi
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Ronghua Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| |
Collapse
|
2
|
Huang C, Shu Y, Zhu Y, Liu H, Wang X, Wen H, Liu J, Li W. Discovery of non-substrate, environmentally sensitive turn-on fluorescent probes for imaging HDAC8 in tumor cells and tissue slices. Bioorg Med Chem 2022; 68:116821. [PMID: 35661851 DOI: 10.1016/j.bmc.2022.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
Histone deacetylase 8 (HDAC8) is overexpressed in multiple cancers and lack of effective chemical probes which could detect and visualize HDAC8 in tumor cells and tissues remains unsolved. In this work, three novel turn-on HDAC8 fluorescent probes 17-19 derived from solvatochromic fluorophore 4-sulfamonyl-7-aminobenzoxadiazole (SBD) conjugating with a potent HDAC8 inhibitor PCI-34051 (IC50 = 10 nM) as the recognition group were fabricated. The probes exhibited much stronger fluorescence when they transfer from hydrophilic environment (Φ < 8%) to hydrophobic environment (Φ > 46%). Compared with PCI-34051 (KD = 9.16 × 10-6 M), probes 17 (KD = 5.37 × 10-6 M), 18 (KD = 3.57 × 10-6 M) and 19 (KD = 8.89 × 10-6 M) possessed slightly better affinity for HDAC8. Probe 19 was selected for cell imaging and it showed significantly enhanced fluorescence only after binding into the cavity of HDAC8 in SH-SY5Y and MDA-MB-231 tumor cells. Co-localization results demonstrated that HDAC8 is expressed in cytoplasm and nucleus. Furthermore, probe 19 was successfully utilized to distinguish the expression level of HDAC8 in SH-SY5Y tumor and normal tissue slices.
Collapse
Affiliation(s)
- Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueyue Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongjing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Synthesis and pharmacological validation of fluorescent diarylsulfonylurea analogues as NLRP3 inhibitors and imaging probes. Eur J Med Chem 2022; 237:114338. [DOI: 10.1016/j.ejmech.2022.114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/20/2022]
|
4
|
Luo D, Zhang X, Li X, Zhen YY, Zeng X, Xiong Z, Zhang Y, Li H. Responsive Fluorescent Coumarin–Cinnamic Acid Conjugates for α-Glucosidase Detection. Front Chem 2022; 10:927624. [PMID: 35836679 PMCID: PMC9273884 DOI: 10.3389/fchem.2022.927624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
α-Glucosidase is a potent drug target for treating type II diabetes mellitus. A great number of α-glucosidase inhibitors have been developed based on the molecular skeletons of bioactive natural products. However, efficient fluorescent probes for α-glucosidase detection are still limited, not to mention the probes with additional inhibitory functions. In this work, aiming for the enzyme’s highly specific detection, we designed and synthesized two environmentally sensitive fluorescent probes, namely, LD01 and LD02, respectively, based on conjugates of coumarin and cinnamic acid derivatives. We found a significant responsive emission enhancement upon LD02’s binding to α-glucosidase. These newly designed probes can act as a simple but efficient tool to evaluate the binding affinity of α-glucosidase to their inhibitors.
Collapse
Affiliation(s)
- Dong Luo
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
| | - Xin Zhang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
| | - Xiaoying Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
| | - Yi-Yu Zhen
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
| | - Xingyi Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
| | - Zhuang Xiong
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
- *Correspondence: Zhuang Xiong, ; Yinghui Zhang, ; Hongguang Li,
| | - Yinghui Zhang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
- *Correspondence: Zhuang Xiong, ; Yinghui Zhang, ; Hongguang Li,
| | - Hongguang Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
- *Correspondence: Zhuang Xiong, ; Yinghui Zhang, ; Hongguang Li,
| |
Collapse
|
5
|
Upregulation of wild-type p53 by small molecule-induced elevation of NQO1 in non-small cell lung cancer cells. Acta Pharmacol Sin 2022; 43:692-702. [PMID: 34035487 PMCID: PMC8888561 DOI: 10.1038/s41401-021-00691-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2021] [Indexed: 11/08/2022]
Abstract
The tumor suppressor p53 is usually inactivated by somatic mutations in malignant neoplasms, and its reactivation represents an attractive therapeutic strategy for cancers. Here, we reported that a new quinolone compound RYL-687 significantly inhibited non-small cell lung cancer (NSCLC) cells which express wild type (wt) p53, in contract to its much weaker cytotoxicity on cells with mutant p53. RYL-687 upregulated p53 in cells with wt but not mutant p53, and ectopic expression of wt p53 significantly enhanced the anti-NSCLC activity of this compound. RYL-687 induced production of reactive oxygen species (ROS) and upregulation of Nrf2, leading to an elevation of the NAD(P)H:quinoneoxidoreductase-1 (NQO1) that can protect p53 by inhibiting its degradation by 20S proteasome. RYL-687 bound NQO1, facilitating the physical interaction between NQO1 and p53. NQO1 was required for RYL-687-induced p53 accumulation, because silencing of NQO1 by specific siRNA or an NQO1 inhibitor uridine, drastically suppressed RYL-687-induced p53 upregulation. Moreover, a RYL-687-related prodrug significantly inhibited tumor growth in NOD-SCID mice inoculated with NSCLC cells and in a wt p53-NSCLC patient-derived xenograft mouse model. These data indicate that targeting NQO1 is a rational strategy to reactivate p53, and RYL-687 as a p53 stabilizer bears therapeutic potentials in NSCLCs with wt p53.
Collapse
|
6
|
He S, Ma J, Fang Y, Liu Y, Wu S, Dong G, Wang W, Sheng C. Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharm Sin B 2021; 11:1617-1628. [PMID: 34221872 PMCID: PMC8245912 DOI: 10.1016/j.apsb.2020.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
The dose-related adverse effects of MDM2‒P53 inhibitors have caused significant concern in the development of clinical safe anticancer agents. Herein we report an unprecedented homo-PROTAC strategy for more effective disruption of MDM2‒P53 interaction. The design concept is inspired by the capacity of sub-stoichiometric catalytic PROTACs enabling to degrade an unwanted protein and the dual functions of MDM2 as an E3 ubiquitin ligase and a binding protein with tumor suppressor P53. The new homo-PROTACs are designed to induce self-degradation of MDM2. The results of the investigation have shown that PROTAC 11a efficiently dimerizes MDM2 with highly competitive binding activity and induces proteasome-dependent self-degradation of MDM2 in A549 non-small cell lung cancer cells. Furthermore, markedly, enantiomer 11a-1 exhibits potent in vivo antitumor activity in A549 xenograft nude mouse model, which is the first example of homo-PROTAC with in vivo therapeutic potency. This study demonstrates the potential of the homo-PROTAC as an alternative chemical tool for tumorigenic MDM2 knockdown, which could be developed into a safe therapy for cancer treatment.
Collapse
Affiliation(s)
- Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Junhui Ma
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuxin Fang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Shanchao Wu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel./fax: +86 21 81871239.
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Corresponding authors. Tel./fax: +86 21 81871239.
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200072, China
- Corresponding authors. Tel./fax: +86 21 81871239.
| |
Collapse
|
7
|
Dong G, Chen L, Zhang J, Liu T, Du L, Sheng C, Li M. Discovery of Turn-On Fluorescent Probes for Detecting PDEδ Protein in Living Cells and Tumor Slices. Anal Chem 2020; 92:9516-9522. [PMID: 32571022 DOI: 10.1021/acs.analchem.0c00335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first small-molecule fluorescent turn-on probes for detecting PDEδ protein were rationally designed, showing reasonable fluorescent properties and the fluorescent ability has been applied for visualization of the PDEδ protein in living cells and at tissue levels. The qPCR results showed that the mRNA expression of KRAS, PDEδ, AKT1, MAPK1, MEK7, RAF1, and mTOR were downregulated by probes 1-3 through PI3K/AKT/mTOR and MAPK signal pathways. The probes also can downregulate the protein level of pErk and tErk. Therefore, these small-molecule fluorescent probes are expected to be used in the screening of antipancreatic cancer drugs targeting the PDEδ protein, as well as in obtaining a better understanding of the pathological and physiological roles of PDEδ protein.
Collapse
Affiliation(s)
- Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Long Chen
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jing Zhang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Tingting Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|