1
|
Yang C, Xu G, Hou C, Zhang H. Ratiometric fluorescence nanoprobe based on nitrogen-doped carbon dots for Cu 2+ and Fe 3+ detection. Sci Rep 2025; 15:6261. [PMID: 39979366 PMCID: PMC11842751 DOI: 10.1038/s41598-025-89327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025] Open
Abstract
Heavy metal ions pollution in environmental waters has an increasing impact on human health. As two common metal ions, copper ions (Cu2+) and ferric ions (Fe3+) widely exist in nature and play a vital role in life process. Therefore, it is significant to design sensitive and simple detection approaches for Cu2+ and Fe3+. In our work, the ratiometric fluorescence analysis method (denoted as N-CDs/OPD) was established for Cu2+ and Fe3+ detection. The N-CDs exhibited a Cu2+ and Fe3+ fluorescence quenching response properties. The o-phenylenediamine (OPD) may be oxidized to 2,3-diaminophenazine (DAP) by Cu2+ and Fe3+. With addition of Cu2+ or Fe3+, the fluorescence of N-CDs (436 nm) was quenched and a new peak at 556 nm (DAP) appeared, which realized fluorescent ratiometric detection of Cu2+ and Fe3+. The Cu2+ concentration shows a good linear correlation versus fluorescence ratio (F436/F556) in the range of 10 to 30 µM (R2 = 0.9981) with detection limit (LOD) of 0.86 µM. In addition, a good linear relationship between fluorescence ratio (F436/F556) and Fe3+ concentration in the range of 20 to 80 µM (R2 = 0.9880) with LOD of 7.12 µM. This nanoprobe realizes the detection of authentic samples successfully, which is expected to serve as a testing kit for analysis in water samples.
Collapse
Affiliation(s)
- Chunlei Yang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Guiju Xu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chenghao Hou
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Hongwei Zhang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
2
|
Zhang Y, Han M, Peng D, Qin H, Zheng H, Xiao J, Yang N. MOF-derived high-density carbon nanotubes "tentacle" with boosting electrocatalytic activity for detecting ascorbic acid. Talanta 2024; 279:126578. [PMID: 39032458 DOI: 10.1016/j.talanta.2024.126578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Accurate detection of ascorbic acid (AA) plays a significant role in food and human physiological processes. Herein, a three-dimensional flexible leaf-like nitrogen-doped hierarchical carbon nanoarrays with high-density carbon nanotube "tentacle" architecture (NC/CNT-Co), which possesses high specific surface area, plenty of active defect sites, and various pore size distributions, was synthesized by the pyrolysis of zeolitic imidazolate framework (ZIF(Co)), while g-C3N4 acted as carbon source and heteroatom doping agent. Benefiting from its unique structure and surface properties, a selective and highly sensitive AA sensor was developed using this material. Compared to powder materials, NC/CNT-Co modified CF (CF@NC/CNT-Co) which don't be extra decorated, exhibits lower detection limit (1 μM), a wider linear range (20-1400 μM), and better stability, showing higher performance in electrocatalysis and detection of AA. Furthermore, CF@NC/CNT-Co also demonstrates high resistance to interference and fouling in AA detection. Particularly, the prepared CF@NC/CNT-Co electrode could determine AA in beverage samples with a recovery rate of 96.3-103.5 %. Therefore, the three-dimensional NC/CNT-Co hierarchical structure can be provided as an original electrode nanomaterial suitable for the selective and sensitive detection of AA, with a wide range of practical applications from food analysis to the pharmaceutical industry.
Collapse
Affiliation(s)
- Yan Zhang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China
| | - Minghui Han
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China
| | - Danni Peng
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China
| | - Haowen Qin
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China
| | - Hehaoming Zheng
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China
| | - Jian Xiao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, Wuhan, 430205, Hubei Province, China
| | - Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
3
|
Jiang J, Wang X, Bao Y, Shen F, Wang G, Li K, Lin Y. Harnessing Graphdiyne for Selective Cu 2+ Detection: A Promising Tool for Parkinson's Disease Diagnostics and Pathogenesis. ACS Sens 2024; 9:2317-2324. [PMID: 38752502 DOI: 10.1021/acssensors.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cu2+ accelerates the viral-like propagation of α-synuclein fibrils and plays a key role in the pathogenesis of Parkinson's disease (PD). Therefore, the accurate detection of Cu2+ is essential for the diagnosis of PD and other neurological diseases. The Cu2+ detection process is impeded by substances that have similar electrochemical properties. In this study, graphdiyne (GDY), a new kind of carbon allotrope with strong electron-donating ability, was utilized for the highly selective detection of Cu2+ by taking advantage of its outstanding adsorption capacity for Cu2+. Density functional theory (DFT) calculations show that Cu atoms are adsorbed in the cavity of GDY, and the absorption energy between Cu and C atoms is higher than that of graphene (GR), indicating that the cavity of GDY is favorable for the adsorption of Cu atoms and electrochemical sensing. The GDY-based electrochemical sensor can effectively avoid the interference of amino acids, metal ions and neurotransmitters and has a high sensitivity of 9.77 μA·μM-1·cm-2, with a minimum detectable concentration of 200 nM. During the investigating pathogenesis and therapeutic process of PD with α-synuclein as the diagnostic standard, the concentration of Cu2+ in cells before and after L-DOPA and GSH treatments were examined, and it was found that Cu2+ exhibits high potential as a biomarker for PD. This study not only harnesses the favorable adsorption of the GDY and Cu2+ to improve the specificity of ion detection but also provide clues for deeper understanding of the role of Cu2+ in neurobiology and neurological diseases.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xu Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yongqi Bao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Fangxu Shen
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
4
|
Li M, Wang G, Dai J, Zhao Z, Zhe Y, Yang H, Lin Y. Bioinspired CuZn-N/C Single-Atom Nanozyme with High Substrate Specificity for Selective Online Monitoring of Epinephrine in Living Brain. Anal Chem 2023; 95:14365-14374. [PMID: 37712586 DOI: 10.1021/acs.analchem.3c02739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Though many elegant laccase mimics have emerged, these mimics generally have no substrate selectivity as well as low activity, making it difficult to fulfill the demand for monitoring in physiological conditions. Herein, inspired by the Cu-N ligand structure in the active site of natural laccase, we revealed that a carbon nanomaterial with atomically dispersed Cu and Zn atoms (CuZn-N/C) and a well-defined ligand structure could function as an effective laccase mimic for selectively catalyzing epinephrine (EP) oxidation. Catalytic activity of the CuZn-N/C nanozyme was superior to those of Cu-N/C and Zn-N/C and featured a Km value nearly 3-fold lower than that of natural laccase, which indicated that CuZn-N/C has a better affinity for EP. Density functional theory (DFT) revealed the mechanism of the superior catalytic ability of dual-metal CuZn-N/C as follows: (1) the exact distance of the two metal atoms in the CuZn-N/C catalyst makes it suitable for adsorption of the EP molecule, and the CuZn-N/C catalyst can offer the second hydrogen bond that stabilizes the adsorption; (2) molecular orbitals and density of states indicate that the strong interaction between the EP molecule and CuZn-N/C is important for EP catalytic oxidization. Furthermore, a sensitive and selective online optical detection platform (OODP) is constructed for determining EP with a low limit of detection (LOD) of 0.235 μM and a linear range of 0.2-20 μM. The system allows real-time measurement of EP release in the rat brain in vivo following ischemia with dexmedetomidine administration. This work not only provides an idea of designing efficient laccase mimics but also builds a promising chemical platform for better understanding EP-related drug action for ischemic cerebrovascular illnesses and opens up possibilities to explore brain function.
Collapse
Affiliation(s)
- Mengying Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jing Dai
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yadong Zhe
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Huan Yang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
5
|
Furletov A, Apyari V, Volkov P, Torocheshnikova I, Dmitrienko S. Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam. SENSORS (BASEL, SWITZERLAND) 2023; 23:7994. [PMID: 37766049 PMCID: PMC10536471 DOI: 10.3390/s23187994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Adsorption of silver nanoparticles on polymers may affect the processes in which they participate, adjusting the analytical characteristics of methods for the quantitation of various substances. In the present study, a composite material based on silver triangular nanoplates (AgTNPs) and polyurethane foam was proposed for chemical analysis. The prospects of its application for the solid-phase/colorimetric determination of organic thiols were substantiated. It was found that aggregation of AgTNPs upon the action of thiols is manifested by a decrease in the AgTNPs' localized surface plasmon resonance band and its significant broadening. Spectral changes accompanying the process can be registered using household color-recording devices and even visually. Four thiols differing in their functional groups were tested. It was found that their limits of detection increase in the series cysteamine < 2-mercaptoethanol < cysteine = 3-mercaptopropionic acid and come to 50, 160, 500, and 500 nM, respectively. The applicability of the developed approach was demonstrated during the analysis of pharmaceuticals and food products.
Collapse
Affiliation(s)
- Aleksei Furletov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Apyari
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Pavel Volkov
- Scientific-Research Institute of Chemical Reagents and Special Purity Chemicals, National Research Center “Kurchatov Institute”, 107076 Moscow, Russia
| | | | | |
Collapse
|
6
|
Furletov AA, Apyari VV, Garshev AV, Dmitrienko SG. Prospects for the Use of Analytical Systems Based on Silver Triangular Nanoplates for the Spectrophotometric Determination of Reductants. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Song Q, Li Q, Yan J, Song Y. Echem methods and electrode types of the current in vivo electrochemical sensing. RSC Adv 2022; 12:17715-17739. [PMID: 35765338 PMCID: PMC9199085 DOI: 10.1039/d2ra01273a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
For a long time, people have been eager to realize continuous real-time online monitoring of biological compounds. Fortunately, in vivo electrochemical biosensor technology has greatly promoted the development of biological compound detection. This article summarizes the existing in vivo electrochemical detection technologies into two categories: microdialysis (MD) and microelectrode (ME). Then we summarized and discussed the electrode surface time, pollution resistance, linearity and the number of instances of simultaneous detection and analysis, the composition and characteristics of the sensor, and finally, we also predicted and prospected the development of electrochemical technology and sensors in vivo.
Collapse
Affiliation(s)
- Qiuye Song
- The Affiliated Zhangjiagang Hospital of Soochow University Zhangjiagang 215600 Jiangsu People's Republic of China +86 791 87802135 +86 791 87802135
| | - Qianmin Li
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine 1688 Meiling Road Nanchang 330006 China
| | - Jiadong Yan
- The Affiliated Zhangjiagang Hospital of Soochow University Zhangjiagang 215600 Jiangsu People's Republic of China +86 791 87802135 +86 791 87802135
| | - Yonggui Song
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine 1688 Meiling Road Nanchang 330006 China.,Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College 1688 Meiling Road Nanchang 330006 China
| |
Collapse
|
8
|
Ren G, Dong F, Zhao Z, Li K, Lin Y. Structure Defect Tuning of Metal-Organic Frameworks as a Nanozyme Regulatory Strategy for Selective Online Electrochemical Analysis of Uric Acid. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52987-52997. [PMID: 34723454 DOI: 10.1021/acsami.1c17974] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozymes have been designed to address the limitations of high cost and poor stability involving natural enzymes in analytical applications. However, the catalytic efficiency of the nanozyme still needs to be improved so that it can meet the selectivity and stability requirements of accurate biomolecule analysis. Here, we presented structure defects of metal-organic frameworks (MOFs) as a tuning strategy to regulate the catalytic efficiency of artificial nanozymes and investigated the roles of defects on the catalytic activity of oxidase-like MOFs. Structural defects were introduced into a novel Co-containing zeolitic imidazolate framework with gradually loosened morphology (ZIF-L-Co) by doping cysteine (Cys). It was found that with the increase in defect degree, the properties of materials such as ascorbate oxidase-like, glutathione oxidase-like, and laccase-like were obviously enhanced by over 5, 2, and 3 times, respectively. In-depth structural investigations indicate that the doping of sulfur inducing structural defects which may destroy the equilibrium state between cobalt and nitrogen in 2-methylimidazole and distort the crystal lattice, thereby enhancing the adsorption of oxygen and thus promoting the oxidase-like activity. The ZIF-L-Co-10 mg with enhanced ascorbate oxidase- and laccase-like activity was loaded into a microreactor and integrated into an online electrochemical system (OECS) in the upstream of the detector. This nanozyme-based microreactor can completely remove ascorbic acid, dopamine, and 3,4-dihydroxyphenylacetic acid which are the main interference toward uric acid (UA) electrochemical measurement, and the ZIF-L-Co-10 mg Cys-based OECS system is capable of continuously capturing UA change in rat brain following ischemia-reperfusion injury. Structure defect tuning of ZIF-L-Co not only provides a new regulatory strategy for artificial nanozyme activity but also provides a critical chemical platform for the investigation of UA-related brain function and brain diseases.
Collapse
Affiliation(s)
- Guoyuan Ren
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Fangdi Dong
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| |
Collapse
|
9
|
Zaytsev VD, Furletov AA, Apyari VV, Garshev AV, Dmitrienko SG, Zolotov YA. Label-free silver triangular nanoplates for spectrophotometric determination of catecholamines and their metabolites. Mikrochim Acta 2020; 187:610. [PMID: 33057848 DOI: 10.1007/s00604-020-04576-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/29/2020] [Indexed: 01/16/2023]
Abstract
A novel method towards spectrophotometric determination of catecholamines and their metabolites differing in their functional groups has been developed. This method is based on a change in morphology of silver triangular nanoplates upon the action of cateсholamines and their metabolites, which is manifested by the decrease of the nanoparticle local surface plasmon resonance (LSPR) band intensity or its shift to the short-wavelength region of the spectrum. The shift value of the LSPR band or the change of its intensity increases with increasing concentration of catecholamines or their metabolites, which is proposed for their spectrophotometric determination. The limits of detection of catecholamines and their metabolites under selected conditions increase in the series homovanillic acid < vanillylmandelic acid < L-epinephrine < L-norepinephrine < dopamine and are 0.25, 1.2, 3.0, 64, and 130 μmol L-1, respectively. The selectivity of the proposed method was assessed using vanillylmandelic acid as example. It was found that the determination of vanillylmandelic acid does is not interfered in the presence of 4000-fold excess of Na+, K+, CH3COO-, and 1000-fold excess of Mg2+, Ca2+, Al3+, NO3-. The method also allows for the selective determination of vanillylmandelic acid in the presence of a 1000-fold excess of structurally related substances that do not contain either a catechol fragment or an electron donor substituent. The proposed approach was successfully applied to the determination of catecholamines in pharmaceuticals and artificial urine. Graphical abstract.
Collapse
Affiliation(s)
- Valeriy D Zaytsev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia
| | - Aleksei A Furletov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia
| | - Vladimir V Apyari
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia.
| | - Alexey V Garshev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, 1/73, 119991, Moscow, Russia
| | - Stanislava G Dmitrienko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia
| | - Yury A Zolotov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy Avenue, 31, 119991, Moscow, Russia
| |
Collapse
|
10
|
Furletov A, Apyari V, Garshev A, Dmitrienko S. A Comparative Study on the Oxidation of Label-Free Silver Triangular Nanoplates by Peroxides: Main Effects and Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20174832. [PMID: 32867039 PMCID: PMC7506893 DOI: 10.3390/s20174832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, analytical systems based on silver triangular nanoplates (AgTNPs) have been shown as good prospects for chemical sensing. However, they still remain relatively poorly studied as colorimetric probes for sensing various classes of compounds. This study shows that these nanoparticles are capable of being oxidized by peroxides, including both hydrogen peroxide and its organic derivatives. The oxidation was found to result in a decrease in the AgTNPs' local surface plasmon resonance band intensity at 620 nm. This was proposed for peroxide-sensitive spectrophotometric determination. Five peroxides differing in their structure and number of functional groups were tested. Three of them easily oxidized AgTNPs. The effects of a structure of analytes and main exterior factors on the oxidation are discussed. The detection limits of peroxides in the selected conditions increased in the series peracetic acid < hydrogen peroxide < tert-butyl hydroperoxide, coming to 0.08, 1.6 and 24 μmol L-1, respectively. tert-Butyl peroxybenzoate and di-tert-butyl peroxide were found to have no effect on the spectral characteristics of AgTNPs. By the example of hydrogen peroxide, it was found that the determination does not interfere with 100-4000-fold quantities of common inorganic ions. The proposed approach was successfully applied to the analysis of drugs, cosmetics and model mixtures.
Collapse
Affiliation(s)
- Aleksei Furletov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
| | - Vladimir Apyari
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
| | - Alexey Garshev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Stanislava Dmitrienko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
| |
Collapse
|
11
|
Wang C, Ren G, Yuan B, Zhang W, Lu M, Liu J, Li K, Lin Y. Enhancing Enzyme-like Activities of Prussian Blue Analog Nanocages by Molybdenum Doping: Toward Cytoprotecting and Online Optical Hydrogen Sulfide Monitoring. Anal Chem 2020; 92:7822-7830. [PMID: 32378404 DOI: 10.1021/acs.analchem.0c01028] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Artificial nanozymes have been designed to solve the problems of high cost and poor stability involving natural enzymes in analytical applications. Nevertheless, the catalytic efficiency of the nanozyme still needs to be improved so that it can meet the stability and sensitivity requirements of continuous biological detection. We presented an effective tailoring strategy to enhance the enzyme-like activities of Prussian-blue-analog-based nanozymes. Molybdenum-polysulfide-deposited nickel-iron bimetal Prussian-blue-analog-based hollow nanocages (Nanocages) with peroxidase-, catalase-, and laccase-mimicking activities were synthesized. The doping of molybdenum successfully tailored the size, morphology, composition, and complex structure of the Nanocage, and the peroxidase- and laccase-mimicking activities of the Nanocage nanozyme were enhanced by over 37 and 27 times, respectively, compared with pristine Prussian blue analogs. Moreover, in environments of harsh pH, high temperature, and high salt concentration, Nanocages exhibited much higher stability than natural enzymes. The peroxidase- and catalase-mimicking activities were applied to eliminate reactive oxygen species in cells, whereas the laccase-like activity of Nanocages was integrated with an online sensing platform for in vivo and continuous optical hydrogen sulfide monitoring in the brains of living rats. Our findings may provide possibilities for advancing the design strategy of highly active nanozymes as well as nanozyme-based in vivo detection methods and will offer unique opportunities for their involvement in bioanalytical chemistry.
Collapse
Affiliation(s)
- Chao Wang
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Binbin Yuan
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Wang Zhang
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Mingju Lu
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Jia Liu
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| |
Collapse
|
12
|
Jiang Y, Xiao X, Li C, Luo Y, Chen S, Shi G, Han K, Gu H. Facile Ratiometric Electrochemical Sensor for In Vivo/Online Repetitive Measurements of Cerebral Ascorbic Acid in Brain Microdiaysate. Anal Chem 2020; 92:3981-3989. [PMID: 32037799 DOI: 10.1021/acs.analchem.9b05484] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The in vivo monitoring of ascorbic acid (AA) following physiological and pathological events is of great importance because AA plays a critical role in brain functions. The conventional electrochemical sensors (ECSs) usually suffered from poor selectivity and sluggish electron transfer kinetics for cerebral AA oxidation. The exploitation of ECSs adapt to the electrochemical detection (ECD)-microdialysis system, here we reported a facile ratiometric electrochemical sensor (RECS) for in vivo/online repetitive measurements of cerebral AA in brain microdiaysate. The sensor were constructed by careful electrodeposition of graphene oxide (GO) onto glassy carbon (GC) electrodes. Methylene blue (MB) was electrostatically adsorbed onto the GO surface as a built-in reference to achieve ratiometric detection of AA. The subsequent proper electroreduction treatment was able to readily facilitate the oxidation of AA at a relatively negative potential (-100 mV) and the oxidation of MB at separated potential (-428 mV). The in vitro experiments demonstrated that the RECS exhibited high sensitivity (detection limit: 10 nM), selectivity, and stability toward AA determination, enabling the in vivo/online repetitive measurement of cerebral AA in brain microdiaysate with high reliability. As a result, the designed RECS was successfully applied in the ECD-microdialysis system to in vivo/online repetitive monitoring the dynamic change of cerebral AA in the progress of the global cerebral ischemia/reperfusion events. More, the microinjection of endogenous AA and AA oxidase (AAOx) verified the reliability of the proposed RECS for in vivo/online repetitive cerebral AA detection. This proposed sensor filled the gap that no rational electrochemical sensor has been developed for the ECD-microdialysis system since its creation by the Mao group in 2005, which provided a reliable and effective method for brain chemistry research.
Collapse
Affiliation(s)
- Yimin Jiang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Xia Xiao
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Chenchen Li
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yu Luo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Kai Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
13
|
Ding Y, Ren G, Wang G, Lu M, Liu J, Li K, Lin Y. V2O5 Nanobelts Mimick Tandem Enzymes To Achieve Nonenzymatic Online Monitoring of Glucose in Living Rat Brain. Anal Chem 2020; 92:4583-4591. [DOI: 10.1021/acs.analchem.9b05872] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yongqi Ding
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Mingju Lu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jia Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|