1
|
Liu X, Zhang Q, Zong C, Gai H. Digital Immunoassay for Proteins: Theory, Methodology, and Clinical Applications. Anal Chem 2025; 97:9077-9110. [PMID: 40257815 DOI: 10.1021/acs.analchem.4c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| |
Collapse
|
2
|
Huang P, Lan H, Liu B, Mo Y, Gao Z, Ye H, Pan T. Transformative laboratory medicine enabled by microfluidic automation and artificial intelligence. Biosens Bioelectron 2025; 271:117046. [PMID: 39671961 DOI: 10.1016/j.bios.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Laboratory medicine provides pivotal medical information through analyses of body fluids and tissues, and thus, it is essential for diagnosis of diseases as well as monitoring of disease progression. Despite its universal importance, the field is currently suffering from the limited workforce and analytical capabilities due to the increasing pressure from expanding global population and unexpected rise of noncommunicable diseases. The emerging technologies of microfluidic automation and artificial intelligence (AI) has led to the development of advanced diagnostic platforms, positioning themselves as adaptable solutions to enable highly efficient and accessible laboratory medicine. In this review, we will provide a comprehensive review of microfluidic automation, focusing on the microstructure design and automation principles, along with its intended functionalities for diagnostic purposes. Subsequently, we exemplify the integration of AI with microfluidics and illustrating how their combination benefits for the applications and what the challenges are in this rapidly evolving field. Finally, the review offers a balanced perspective on the microfluidics and AI, discussing their promising role in advancing laboratory medicine.
Collapse
Affiliation(s)
- Pijiang Huang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Huaize Lan
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Binyao Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Yuhao Mo
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Zhuangqiang Gao
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| | - Haihang Ye
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China; Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Tingrui Pan
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026 PR China.
| |
Collapse
|
3
|
Zhang Q, Chai W, Pan X, Gai H. Amplification-Free Digital Immunoassay down to the Attomolar Level by Synergistic Sedimentation of Brownian Motion Suppression and Dehydration Transfer. Anal Chem 2024. [PMID: 38329294 DOI: 10.1021/acs.analchem.3c05066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Amplification-free digital immunoassays (DIAs) typically utilize optical nanoparticles to enhance single immunocomplex molecule detection. The efficiency and uniformity of transferring the nanoparticles from a bulk solution to a solid surface determine the limit of detection (LOD) and the accuracy of DIAs. Previous methods suffer from issues like low efficiency, nonuniform distribution, and particle aggregation. Here, we present a novel technique named synergistic sedimentation of Brownian motion suppression and dehydration transfer (SynSed) for nanoparticles using water-soluble polymers. The efficiency of transferring quantum dots (QDs) was increased from 10.7 to 91.4%, and the variation in QD distribution was restricted to 8.8%. By incorporating SynSed into DIAs, we achieved a remarkable reduction in the LOD (down to 3.9 aM) for carcinoembryonic antigen and expanded the dynamic range to cover 3 orders of magnitude in concentration, ranging from 0.01 to 10 fM. DIAs enhanced with SynSed possess ultrahigh sensitivity, advanced accuracy, and specificity, offering a great premise in early disease diagnostics, risk stratification, and treatment response monitoring.
Collapse
Affiliation(s)
- Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Wenwen Chai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaoyan Pan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
4
|
Wang Z, Wei P. Shifting the paradigm in RNA virus detection: integrating nucleic acid testing and immunoassays through single-molecule digital ELISA. Front Immunol 2024; 14:1331981. [PMID: 38235132 PMCID: PMC10791976 DOI: 10.3389/fimmu.2023.1331981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
In this review article, we explore the characteristics of RNA viruses and their potential threats to humanity. We also provide a brief overview of the primary contemporary techniques used for the early detection of such viruses. After thoroughly analyzing the strengths and limitations of these methods, we highlight the importance of integrating nucleic acid testing with immunological assays in RNA virus detection. Although notable methodological differences between nucleic acid testing and immune assays pose challenges, the emerging single-molecule immunoassay-digital ELISA may be applied to technically integrate these techniques. We emphasize that the greatest value of digital ELISA is its extensive compatibility, which creates numerous opportunities for real-time, large-scale testing of RNA viruses. Furthermore, we describe the possible developmental trends of digital ELISA in various aspects, such as reaction carriers, identification elements, signal amplification, and data reading, thus revealing the remarkable potential of single-molecule digital ELISA in future RNA virus detection.
Collapse
Affiliation(s)
| | - Pei Wei
- Department of Immunology, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
5
|
Xu Z, Liu X, Zong C, Zhang Q, Gai H. Homogeneous immunoassay utilizing fluorescence resonance energy transfer from quantum dots to tyramide dyes deposited on full immunocomplexes. Analyst 2023; 148:4877-4884. [PMID: 37642356 DOI: 10.1039/d3an01174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
There is an urgent need for homogeneous immunoassays that offer sufficient sensitivity for routine clinical practice. In this study, we have developed a highly sensitive, fluorescence resonance energy transfer (FRET)-based homogeneous immunoassay. Unlike previous FRET-based homogeneous immunoassays, where acceptors were attached to antibody molecules located far from the donor, we employed acceptors to label the entire sandwich-structured immunocomplex, including two antibodies and one antigen. As a result, the FRET signal was amplified by a factor of 10, owing to the reduced distance between the donor and acceptors. We validated our method by quantifying carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) in PBS buffer and blank plasma. The limits of detection (LOD) for CEA and AFP in both PBS buffer and blank plasma were comparable, reaching sub-femtomolar levels. Furthermore, we successfully quantified CEA and AFP in three human plasma samples, thereby confirming the reliability of our method for clinical applications.
Collapse
Affiliation(s)
- Zihan Xu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Fan W, Dong Y, Ren W, Liu C. Single microentity analysis-based ultrasensitive bioassays: Recent advances, applications, and perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Zhou Y, Zhao W, Feng Y, Niu X, Dong Y, Chen Y. Artificial Intelligence-Assisted Digital Immunoassay Based on a Programmable-Particle-Decoding Technique for Multitarget Ultrasensitive Detection. Anal Chem 2023; 95:1589-1598. [PMID: 36571573 DOI: 10.1021/acs.analchem.2c04703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of a multitarget ultrasensitive immunoassay is significant to fields such as medical research, clinical diagnosis, and food safety inspection. In this study, an artificial intelligence (AI)-assisted programmable-particle-decoding technique (APT)-based digital immunoassay system was developed to perform multitarget ultrasensitive detection. Multitarget was encoded by programmable polystyrene (PS) microspheres with different characteristics (particle size and number), and subsequent visible signals were recorded under an optical microscope after the immune reaction. The resultant images were further analyzed using a customized, AI-based computer vision technique to decode the intrinsic properties of polystyrene microspheres and to reveal the types and concentrations of targets. Our strategy has successfully detected multiple inflammatory markers in clinical serum and antibiotics with a broad detection range from pg/mL to μg/mL without extra signal amplification and conversion. An AI-based digital immunoassay system exhibits great potential to be used for the next generation of multitarget detection in disease screening for candidate patients.
Collapse
Affiliation(s)
- Yang Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Engineering, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weiqi Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yaoze Feng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaohu Niu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongzhen Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, Guangdong, China
| |
Collapse
|
8
|
Lin H, Kasai N, Xu N, Nakajima H, Kato S, Zeng H, Lin JM, Mao S, Uchiyama K. Localized hydrodynamic flow confinement assisted nanowire sensor for ultrasensitive protein detection. Biosens Bioelectron 2022; 218:114788. [DOI: 10.1016/j.bios.2022.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
|
9
|
Dual amplification enabled counting based ultrasensitive enzyme-linked immunosorbent assay. Anal Chim Acta 2022; 1198:339510. [DOI: 10.1016/j.aca.2022.339510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
|
10
|
Liu X, Sun Y, Lin X, Pan X, Wu Z, Gai H. Digital Duplex Homogeneous Immunoassay by Counting Immunocomplex Labeled with Quantum Dots. Anal Chem 2021; 93:3089-3095. [DOI: 10.1021/acs.analchem.0c04020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Yuanyuan Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Xiaoyan Pan
- School of Medicine, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Zhangjian Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
11
|
A whole area scanning-enabled direct-counting strategy for studying blocking efficiency in mitigating protein-solid surface binding. Anal Bioanal Chem 2021; 413:1493-1502. [PMID: 33469711 DOI: 10.1007/s00216-020-03120-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
The study of protein-solid surface binding as well as blocking efficiency of blocking agents plays an important role in the development of high-performance immunoassays. Although conventional colorimetric based assays are widely employed to monitor protein non-specific binding on the surface of microplate wells and evaluate the performance of blocking agents, there is still a great need to develop new methods to achieve the same goal from a new perspective. In this study, an innovative whole area scanning (WAS)-enabled direct-counting strategy was developed and validated through studying the blocking efficiency of different blocking agents on the non-specific binding of streptavidin-alkaline phosphatase conjugate (Strep-ALP, a model protein) to the surface of 96-well microplates. After non-specific binding of Strep-ALP in wells with or without blocking agents' treatment and loading of ELF™ 97 phosphate (ELFP), ALP in Strep-ALP conjugates converts ELFP to water-insoluble ELF™ 97 alcohol (ELFA), which precipitates locally, self-assembles into large needle structures, and glows green fluorescence upon excitation. After quenching the reaction, WAS of the whole wells allows us to directly count the number of individual fluorescent precipitates, which can be used to calculate and compare the blocking efficiency of three commonly used blocking agents (BSA, casein, and dry milk) based on mitigating the non-specific binding of Strep-ALP. WAS-enabled counting of individual needle-type precipitates opens a new avenue to investigate protein-solid surface binding as well as the efficiency of blocking agents with high sensitivity.
Collapse
|
12
|
A critical review: Recent advances in "digital" biomolecule detection with single copy sensitivity. Biosens Bioelectron 2021; 177:112901. [PMID: 33472132 PMCID: PMC7836387 DOI: 10.1016/j.bios.2020.112901] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Detection of a single biomolecule, ranging from nucleic acids, proteins, viruses to bacteria, is of paramount importance in various fields including biology, environment, food and agriculture industry, public health, and medicine. With the understanding of the biological functions of these biomolecules (or bioparticles) and their impacts on public health, environmental pollution, and food safety, advanced detection techniques are unprecedentedly demanded for their early and/or sensitive detection. In this critical review, a series of elegant research about digital detection of biomolecules with potential single copy sensitivity is reviewed and summarized with the focus on the design principle and the innovation of how to accomplish the “digital” detection concept. Starting with a brief introduction on the importance of digital detection, recent advances in “digital” biomolecule detection with single copy sensitivity are grouped and discussed based on the difference of signal reporting systems, including surrogate signal development for “digital” detection, direct visualization for “digital” detection, and nucleic acid amplification enabled “digital” detection. Interdisciplinary combination and integration of different cutting-edge techniques are also discussed with details. The review is closed with the conclusion and future trends.
Collapse
|
13
|
Zhang Q, Li J, Su Y, Pan X, Gai H. Ball-lens assisted sensitivity improvement of fluorescence immunoassay in microchannels. RSC Adv 2021; 11:27541-27546. [PMID: 35480679 PMCID: PMC9037790 DOI: 10.1039/d1ra04360a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
A contactless and ball-lens assisted sensitivity improvement method was present for the fluorescence or luminescence immunoassay in microchannel.
Collapse
Affiliation(s)
- Qingquan Zhang
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jiajia Li
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yuting Su
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaoyan Pan
- Department of Laboratory Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hongwei Gai
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|