1
|
Zhang D, Zhang N, Zhao J, Li X, Bian F, Zhang Y, Ge Y, Li Z. Label-free multiplexed detection based on core-shell photonic barcodes integrated RCA. Biosens Bioelectron 2025; 271:117037. [PMID: 39657551 DOI: 10.1016/j.bios.2024.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Multiplexed, rapid, and accurate virus quantification is of great value in biomedical detection. Herein, we proposed a label-free multiplexed virus screening quantitative biosensor based on color core-shell hydrogel photonic crystal (PhC) barcode integrated rolling circle amplification (RCA). The composite hydrogel shell was formed by acrylic acid and polyethylene glycol diacrylate, and the core silica photonic crystal was used as a detector. In addition, by adjusting the internal periodic structure, the PhC microcarrier was able to perform various color barcodes for the detection of different targets. Based on these excellent properties of the nanocomposite barcode, the biosensor not only demonstrated the ability to rapidly and accurately detect SARS-COV-2-N, SARS-COV-2-S, and H1N1 simultaneously in one tube, but also converting the signal of target protein to nucleic acid signal based on DNA decorated antibody complex combine with the blocked primer and RCA strategy. As a result, the platform achieved highly sensitive multiplexed quantitative detection with a detection limit in the range of 0.30 pg/mL. In addition, the platform we developed was validated by clinical sample analysis with acceptable accuracy and high specificity, demonstrating the good potential applicability of the proposed detection method in clinical screening and diagnosis.
Collapse
Affiliation(s)
- Dagan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China.
| | - Nan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Junqi Zhao
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Xueqin Li
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Feika Bian
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Yi Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China.
| | - Yizhi Ge
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China.
| | - Zhiyang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China.
| |
Collapse
|
2
|
Yang Y, Yu L, Jiang X, Li Y, He X, Chen L, Zhang Y. Recent advances in photonic crystal-based chemical sensors. Chem Commun (Camb) 2024; 60:9177-9193. [PMID: 39099372 DOI: 10.1039/d4cc01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The increasing attention towards environmental quality, food safety, public security and medical diagnosis demands high requirements and standards for chemical sensors with merits of rapid response, high precision, long-term stability and reusability. In this case, a prominent innovation in sensory materials holds potential to realize new generations of chemical sensor technologies. Specifically, photonic crystals (PCs) as structured dielectric materials with spatially periodic ordered arrangements offer unique advantages in improving the sensing performance of chemical sensors. Consequently, the promising properties of PCs promote research on their implementation as an integral part of chemical sensors. This review highlights the integration of PCs into chemical sensors including a range of building blocks for the construction of PCs with versatile opal or opal inverse structural architectures and a delicate choice of surface functionality with associated sensing interfaces for target recognition and signal transduction. Subsequently, based on their synthesis and functionality, we focus on introducing the sensing principles of recent advances in PC-based chemical sensors, such as reflection spectra-based sensing, visual colorimetric sensing, fluorescence sensing, surface-enhanced Raman spectroscopy (SERS)-based sensing and other integrated sensing. Finally, the future prospects and challenges are discussed for the further improvement of PC-based chemical sensors.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Licheng Yu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xiaowen Jiang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
3
|
Deng Z, Ding J, Bu J, Li J, Liu H, Gao P, Gong Z, Qin X, Yang Y, Zhong S. Fluorophore Label-Free Light-up Near Infrared Deoxyribonucleic Acid Nanosensor for Monitoring Extracellular Potassium Levels. Anal Chem 2024; 96:4023-4030. [PMID: 38412242 DOI: 10.1021/acs.analchem.3c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Fluorescent DNA nanosensors have been widely used due to their unique advantages, among which the near-infrared (NIR) imaging mode can provide deeper penetration depth and lower biological background for the nanosensors. However, efficient NIR quenchers require ingenious design, complex synthesis, and modification, which severely limit the development of NIR DNA nanosensors. Label-free strategies based on G-quadruplex (G4) and NIR G4 dyes were first introduced into in situ extracellular imaging, and a novel NIR sensing strategy for the specific detection of extracellular targets is proposed. The strategy avoids complex synthesis and site-specific modification by controlling the change of the NIR signal through the formation of a G4 nanostructure. A light-up NIR DNA nanosensor based on potassium ion (K+)-sensitive G4 chain PS2.M was constructed to verify the strategy. PS2.M forms a stable G4 nanostructure in the presence of K+ and activates the NIR G4 dye CSTS, thus outputting NIR signals. The nanosensor can rapidly respond to K+ with a linear range of 5-50 mM and has good resistance to interference. The nanosensor with cholesterol can provide feedback on the changes in extracellular K+ concentration in many kinds of cells, serving as a potential tool for the study of diseases such as epilepsy and cancer, as well as the development of related drugs. The strategy can be potentially applied to the NIR detection of a variety of extracellular targets with the help of functional DNAs such as aptamer and DNAzyme.
Collapse
Affiliation(s)
- Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiacheng Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Peiru Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, PR China
| |
Collapse
|
4
|
Jia M, Yu L, Li X, Li Y, He X, Chen L, Zhang Y. An aptamer-functionalized photonic crystal sensor for ultrasensitive and label-free detection of aflatoxin B1. Talanta 2023; 260:124638. [PMID: 37156207 DOI: 10.1016/j.talanta.2023.124638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
As a novel optical responsive material, photonic crystal is a promising sensing material in the recognition and detection of small molecules. Herein, a label-free composite sensor for aflatoxin B1 (AFB1) based on aptamer-functionalized photonic crystal arrays was successfully developed. Three-dimensional photonic crystals (3D PhCs) with a controllable number of layers were produced by a layer-by-layer (LBL) approach, and the introduction of gold nanoparticles (AuNPs) facilitated the immobilization procedure of recognition element aptamers, thus creating the AFB1 sensing detection system (AFB1-Apt 3D PhCs). The sensing system AFB1-Apt 3D PhCs exhibited a good linearity in the wide range of 1 pg mL-1-100 ng mL-1 AFB1 with a limit of detection (LOD) of 0.28 pg mL-1. Furthermore AFB1-Apt 3D PhC was successfully applied in the determination of AFB1 in the millet and beer samples with good recovery. The sensing system performed ultrasensitive and label-free detection to the target, which could be further applied in the fields of food safety, clinical diagnosis or environmental monitoring, establishing an efficient and rapid universal detection platform.
Collapse
Affiliation(s)
- Mingdi Jia
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| | - Licheng Yu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| | - Xiaoxuan Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China; National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin, 300071, China.
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116011, China.
| |
Collapse
|
5
|
Yang X, Huang R, Xiong L, Chen F, Sun W, Yu L. A Colorimetric Aptasensor for Ochratoxin A Detection Based on Tetramethylrhodamine Charge Effect-Assisted Silver Enhancement. BIOSENSORS 2023; 13:bios13040468. [PMID: 37185543 PMCID: PMC10136965 DOI: 10.3390/bios13040468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
A novel colorimetric aptasensor based on charge effect-assisted silver enhancement was developed to detect ochratoxin A (OTA). To achieve this objective, gold nanoparticles (AuNPs), which can catalyze silver reduction and deposition, were used as the carrier of the aptamers tagged with a positively charged tetramethylrhodamine (TAMRA). Due to the mutual attraction of positive and negative charges, the TAMRA attracted and retained the silver lactate around the AuNPs. Thus, the chance of AuNP-catalyzed silver reduction was increased. The charge effect-assisted silver enhancement was verified by tagging different base pair length aptamers with TAMRA. Under optimized conditions, the as-prepared OTA aptasensor had a working range of 1 × 102-1 × 106 pg mL-1. The detection limit was as low as 28.18 pg mL-1. Moreover, the proposed aptasensor has been successfully applied to determine OTA in actual samples with satisfactory results.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Rong Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lulu Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Feng Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Du W, Liu J, Li H, Deng C, Luo J, Feng Q, Tan Y, Yang S, Wu Z, Xiao F. Competition-Based Two-Dimensional Photonic Crystal Dually Cross-Linked Supramolecular Hydrogel for Colorimetric and Fluorescent Dual-Mode Sensing of Bisphenol A. Anal Chem 2023; 95:4220-4226. [PMID: 36786428 DOI: 10.1021/acs.analchem.2c05662] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Bisphenol A (BPA), one of the most abundantly produced endocrine disrupting chemicals, is widely used in everyday plastic products and thus must be monitored. Multimode sensing platforms are able to combine the advantages of different strategies while solving the issues of inaccurate test results of single signal sensing. However, the exploration in this field is limited due to the compromise of sensing conditions and inevitable mutual interferences of different systems. Herein, we constructed a two-dimensional photonic crystal dually cross-linked supramolecular hydrogel (2DPCDCSH) by utilizing a host-guest pair of β-cyclodextrin (β-CD) and tert-butyl (t-Bu) as the second cross-linking for colorimetric and fluorescent dual-mode sensing of BPA. Based on the fact that BPA can act as a competitive guest to break the host-guest interaction between β-CD and t-Bu, the cross-linking density decreased and an expansion-induced structural color change occurred. Sensitive and selective BPA detection can be easily achieved by measuring the Debye diffraction ring diameter or observing the color change of 2DPC with a detection limit of 1 μg mL-1. Moreover, the formation of the β-CD/BPA complex gave a significant enhancement of the intrinsic fluorescence of BPA, obtaining a detection limit of 0.001 μg mL-1. The two sensing systems can share the same reaction condition and yield a wider dynamic response range than the single signal strategy. Overall, the proposed method presented an efficient, rapid, cost-effective, and regenerative dual-mode method for BPA analysis and shed new insights for the design of diversified sensing platforms.
Collapse
Affiliation(s)
- Wenfang Du
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Jie Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong Li
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenyi Deng
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jie Luo
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qianqian Feng
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yan Tan
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fubing Xiao
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Cai L, Xu D, Zhang Z, Li N, Zhao Y. Tailoring Functional Micromotors for Sensing. RESEARCH 2023; 6:0044. [PMID: 37040517 PMCID: PMC10078326 DOI: 10.34133/research.0044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023]
Abstract
Micromotors are identified as a promising candidate in the field of sensing benefiting from their capacity of autonomous movement. Here, a review on the development of tailoring micromotors for sensing is presented, covering from their propulsion mechanisms and sensing strategies to applications. First, we concisely summarize the propulsion mechanism of micromotors involving fuel-based propulsion and fuel-free propulsion introducing their principles. Then, emphasis is laid to the sensing stratagems of the micromotors including speed-based sensing strategy, fluorescence-based sensing strategy, and other strategies. We listed typical examples of different sensing stratagems. After that, we introduce the applications of micromotors in sensing fields including environmental science, food safety, and biomedical fields. Finally, we discuss the challenges and prospects of the micromotors tailored for sensing. We believe that this comprehensive review can help readers to catch the research frontiers in the field of sensing and thus to burst out new ideas.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zeyou Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute,University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
8
|
Qiao M, Liu Y, Wei M. Dual-signal output fluorescent aptasensor based on DNA programmability and gold nanoflowers for multiple mycotoxins detection. Anal Bioanal Chem 2023; 415:277-288. [PMID: 36376716 DOI: 10.1007/s00216-022-04403-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Herein, a dual-signal output fluorescent aptamer sensor was constructed for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) using the specific recognition ability of aptamers and the programmability of DNA. A functional capture probe (cDNA) was designed with the black hole quenching motif BHQ1 labeled at the 5' end and biotin (bio) labeled at the 3' end. The fluorescent dye Cy3-labeled aflatoxin B1 aptamer (AFB1-Apt) and the carboxyfluorescein FAM-labeled ochratoxin A aptamer (OTA-Apt) were used as two fluorescent probes. The cDNA is anchored to the quenching material gold nanoflowers (AuNFs) by the action of streptavidin (SA) and biotin. Its ends can be complementarily paired with two fluorescent probe bases to form a double-stranded structure. The fluorescence of Cy3 was quenched by AuNFs, and the fluorescence of FAM was quenched by BHQ1 through the fluorescence energy resonance transfer (FRET) effect, forming a fluorescence quenching system. Due to the high affinity of the target and the aptamer, the structure of the aptamer probe changes and detaches from the sensor when AFB1 and OTA are present, resulting in enhanced fluorescence. Under optimal conditions, the linear range of AFB1 was 0.1-100 ng/mL (R2 = 0.996), the limit of detection (LOD) was as low as 0.014 ng/mL, and the limit of quantification (LOQ) was 0.046 ng/mL. The linear range of OTA was 0.1-100 ng/mL (R2 = 0.995), the limit of detection (LOD) was as low as 0.027 ng/mL, and the limit of quantification (LOQ) was 0.089 ng/mL. The sensor had high accuracy in detecting both AFB1 and OTA in real sample analysis. The results of the t test show that there is no significant difference between the results of this study and the high-performance liquid phase (HPLC) method, indicating that the prepared sensor can be used as a potential platform for multiple mycotoxins detection.
Collapse
Affiliation(s)
- Mengxiang Qiao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
9
|
Dai S, Li Q, Li W, Zhang Y, Dou M, Xu R, Wang T, Lu X, Wang F, Li J. Advances in functional photonic crystal materials for the analysis of chemical hazards in food. Compr Rev Food Sci Food Saf 2022; 21:4900-4920. [PMID: 36117270 DOI: 10.1111/1541-4337.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023]
Abstract
Chemical contaminants in food generally include natural toxins (mycotoxins, animal toxins, and phytotoxins), pesticides, veterinary drugs, environmental pollutants, heavy metals, and illegal additives. Developing a low-cost, simple, and rapid detection technology for harmful substances in food is urgently needed. Analytical methods based on different advanced materials have been developed into rapid detection methods for food samples. In particular, photonic crystal (PC) materials have a unique surface periodic structure, structural color, a large surface area, easy integration with photoelectronic and magnetic devices which have great advantages in the development of rapid, low-cost, and highly sensitive analytical methods. This review focuses on the PC materials in the view of their fabrication processes, functionalized recognition components for the specific recognition of hazardous substances, and applications in the separation, enrichment, and detection of chemical hazards in real samples. Suspension array based on three-dimensional PC microspheres by droplet-based microfluidic assembly is a great promising and powerful platform for food safety detection fields. For the PCs selective analysis, biological antibodies, aptamers, and molecularly imprinted polymers (MIPs) could be modified for specific recognition of target substances, particularly MIPs because of their low-cost and easy mass production. Based on these functional PCs, various toxic and hazardous substances can be selectively enriched or recognized in real samples and further quantified in combination of liquid chromatography method or optical detection methods including fluorescence, chemiluminescence, and Raman spectroscopy.
Collapse
Affiliation(s)
- Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yaodan Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ruimin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tingting Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoyue Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Fenying Wang
- College of Chemistry, Nanchang University, Nanchang, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Zhang W, Qiu L, Shea KJ, Fan J, Liu Y, Zheng W, Xue M, Liu W, Xu Z, E XTF, Dong X, Qiao Y, Meng Z. Quantitative Analysis of Structure Color of Photonic Crystal Sensors Based on HSB Color Space. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35010-35019. [PMID: 35856715 DOI: 10.1021/acsami.2c08431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The photonic crystals (PhCs) have a bright structural color, but their angular dependence and naked-eye observation subjectivity only apply for qualitative analysis. The HSB color space is a three-channel color analysis technology based on hue (H)-saturation (S)-brightness (B). We use the HSB color space to analyze the structural color of the AM/NIPAM PhCs hydrogel sensor in response to temperature and organic solvents. We proved that the structural color analysis based on the hue value (H) could achieve an analysis accuracy close to the spectrum analysis. In addition, we have obtained stimulus-responsive PhCs structure color images from references and quantitatively analyzed them through the HSB color space. The results show that the H of the structural color can establish a high correlation with the specified target. In some cases, its best fitness exceeds traditional spectroscopy methods. This analysis method will provide a general and quantitative analysis technology for the structural color of PhCs by consumer-grade computers and smartphones.
Collapse
Affiliation(s)
- Wenxin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Kenneth J Shea
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jing Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Yangyang Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Wenxiang Zheng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Min Xue
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Wenfang Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Zhibin Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Xiu-Tian-Feng E
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Xiao Dong
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Yu Qiao
- School of Art and Design, Beijing Institute of Technology, Beijing 10081, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| |
Collapse
|
11
|
Guan T, Xu Z, Wang J, Liu Y, Shen X, Li X, Sun Y, Lei H. Multiplex optical bioassays for food safety analysis: Toward on-site detection. Compr Rev Food Sci Food Saf 2022; 21:1627-1656. [PMID: 35181985 DOI: 10.1111/1541-4337.12914] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Food safety analysis plays a significant role in controlling food contamination and supervision. In recent years, multiplex optical bioassays (MOBAs) have been widely applied to analyze multiple hazards due to their efficiency and low cost. However, due to the challenges such as multiplexing capacity, poor sensitivity, and bulky instrumentation, the further application of traditional MOBAs in food screening has been limited. In this review, effective strategies regarding food safety MOBAs are summarized, such as spatial-resolution modes performed in multi-T lines/dots strips or arrays of strip/microplate/microfluidic chip/SPR chip and signal-resolution modes employing distinguishable colorimetric/luminescence/fluorescence/surface plasma resonance/surface-enhanced Raman spectrum as signal tags. Following this, new trends on how to design engineered sensor architecture and exploit distinguishable signal reporters, how to improve both multiplexing capacity and sensitivity, and how to integrate these formats into smartphones so as to be mobile are summarized systematically. Typically, in the case of enhancing multiplexing capacity and detection throughput, microfluidic array chips with multichannel architecture would be a favorable approach to overcome the spatial and physical limitations of immunochromatographic assay (ICA) test strips. Moreover, noble metal nanoparticles and single-excitation, multiple-emission luminescence nanomaterials hold great potential in developing ultrasensitive MOBAs. Finally, the exploitation of innovative multiplexing strategy hybridized with powerful and widely available smartphones opens new perspectives to MOBAs. In future, the MOBAs should be more sensitive, have higher multiplexing capacity, and easier instrumentation.
Collapse
Affiliation(s)
- Tian Guan
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yingju Liu
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
12
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
Wang J, Pinkse PWH, Segerink LI, Eijkel JCT. Bottom-Up Assembled Photonic Crystals for Structure-Enabled Label-Free Sensing. ACS NANO 2021; 15:9299-9327. [PMID: 34028246 PMCID: PMC8291770 DOI: 10.1021/acsnano.1c02495] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
Photonic crystals (PhCs) display photonic stop bands (PSBs) and at the edges of these PSBs transport light with reduced velocity, enabling the PhCs to confine and manipulate incident light with enhanced light-matter interaction. Intense research has been devoted to leveraging the optical properties of PhCs for the development of optical sensors for bioassays, diagnosis, and environmental monitoring. These applications have furthermore benefited from the inherently large surface area of PhCs, giving rise to high analyte adsorption and the wide range of options for structural variations of the PhCs leading to enhanced light-matter interaction. Here, we focus on bottom-up assembled PhCs and review the significant advances that have been made in their use as label-free sensors. We describe their potential for point-of-care devices and in the review include their structural design, constituent materials, fabrication strategy, and sensing working principles. We thereby classify them according to five sensing principles: sensing of refractive index variations, sensing by lattice spacing variations, enhanced fluorescence spectroscopy, surface-enhanced Raman spectroscopy, and configuration transitions.
Collapse
Affiliation(s)
- Juan Wang
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Pepijn W. H. Pinkse
- Complex
Photonic Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Loes I. Segerink
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jan C. T. Eijkel
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
14
|
Gao J, Liu Q, Liu W, Jin Y, Li B. Comparative evaluation and design of a G-triplex/thioflavin T-based molecular beacon. Analyst 2021; 146:2567-2573. [PMID: 33899063 DOI: 10.1039/d1an00252j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Both G-quadruplex (G4) and G-triplex (G3) can bind thioflavin T (ThT) to light up the fluorescence of ThT. G4/ThT and G3/ThT can be used as fluorescent indicators to construct a label-free molecular beacon (MB). In this work, we present a comparative perspective of G3/ThT-based MB and G4/ThT-based MB. The results showed that the G3/ThT-based MB had higher sensitivity and faster response speed than the G4/ThT-based MB. Furthermore, we systematically studied the effect of stem length and varying pairs on the response of the G3/ThT-based MB, and then proposed one rational design of the G3/ThT-based MB. This work demonstrates that the shorter G3 is more suitable for constructing the MB stem. This present work opens a promising way to develop a sensitive, simple and homogeneous biosensing method.
Collapse
Affiliation(s)
- Jingru Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Qiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
15
|
Tittlemier S, Brunkhorst J, Cramer B, DeRosa M, Lattanzio V, Malone R, Maragos C, Stranska M, Sumarah M. Developments in mycotoxin analysis: an update for 2019-2020. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises developments on the analysis of various matrices for mycotoxins published in the period from mid-2019 to mid-2020. Notable developments in all aspects of mycotoxin analysis, from sampling and quality assurance/quality control of analytical results, to the various detection and quantitation technologies ranging from single mycotoxin biosensors to comprehensive instrumental methods are presented and discussed. Aside from sampling and quality control, discussion of this past year’s developments is organised by detection and quantitation technology and covers chromatography with targeted or non-targeted high resolution mass spectrometry, tandem mass spectrometry, detection other than mass spectrometry, biosensors, as well as assays that use alternatives to antibodies. This critical review aims to briefly present the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB, R3C 3G8, Canada
| | - J. Brunkhorst
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - B. Cramer
- University of Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - M.C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- United States Department of Agriculture, ARS National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - M. Stranska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| |
Collapse
|
16
|
Wang F, Li ZF, Yang YY, Wan DB, Vasylieva N, Zhang YQ, Cai J, Wang H, Shen YD, Xu ZL, Hammock BD. Chemiluminescent Enzyme Immunoassay and Bioluminescent Enzyme Immunoassay for Tenuazonic Acid Mycotoxin by Exploitation of Nanobody and Nanobody-Nanoluciferase Fusion. Anal Chem 2020; 92:11935-11942. [PMID: 32702970 PMCID: PMC7743996 DOI: 10.1021/acs.analchem.0c02338] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The isolation of nanobodies (Nbs) from phage display libraries is an increasingly effective approach for the generation of new biorecognition elements, which can be used to develop immunoassays. In this study, highly specific Nbs against the Alternaria mycotoxin tenuazonic acid (TeA) were isolated from an immune nanobody phage display library using a stringent biopanning strategy. The obtained Nbs were characterized by classical enzyme-linked immunosorbent assay (ELISA), and the best one Nb-3F9 was fused with nanoluciferase to prepare an advanced bifunctional fusion named nanobody-nanoluciferase (Nb-Nluc). In order to improve the sensitivity and reduce the assay time, two different kinds of luminescent strategies including chemiluminescent enzyme immunoassay (CLEIA) and bioluminescent enzyme immunoassay (BLEIA) were established, respectively, on the basis of the single Nb and the fusion protein Nb-Nluc for TeA detection. The two-step CLEIA was developed on the basis of the same nanobody as ELISA, only with simple substrate replacement from 3,3',5,5'-tetramethylbenzidine (TMB) to luminol. In contrast with CLEIA, the novel BLEIA was conducted in one-step new strategy on the basis of Nb-Nluc and bioluminescent substrate coelenterazine-h (CTZ-h). Their half maximal inhibitory concentration (IC50) values were similar to 8.6 ng/mL for CLEIA and 9.3 ng/mL for BLEIA, which was a 6-fold improvement in sensitivity compared with that of ELISA (IC50 of 54.8 ng/mL). Both of the two assays provided satisfactory recoveries ranging from 80.1%-113.5% in real samples, which showed better selectivity for TeA analogues and other common mycotoxins. These results suggested that Nbs and Nb-Nluc could be used as useful reagents for immunodetection and that the developed CLEIA/BLEIA have great potential for TeA analysis.
Collapse
Affiliation(s)
- Feng Wang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Zhen-Feng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- Guangzhou Nabo Antibody Technology Co. Ltd, Guangzhou 510530, P. R. China
| | - Yuan-Yuan Yang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - De-Bin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yu-Qi Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Jun Cai
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Hong Wang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Yu-Dong Shen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Zhen-Lin Xu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| |
Collapse
|