1
|
Lin PH, Wu GW, Lin YH, Huang JR, Jeng US, Liu WM, Huang JR. TDP-43 Amyloid Fibril Formation via Phase Separation-Related and -Unrelated Pathways. ACS Chem Neurosci 2024; 15. [PMID: 39358890 PMCID: PMC11488477 DOI: 10.1021/acschemneuro.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Intrinsically disordered regions (IDRs) in proteins can undergo liquid-liquid phase separation (LLPS) for functional assembly, but this increases the chance of forming disease-associated amyloid fibrils. Not all amyloid fibrils form through LLPS however, and the importance of LLPS relative to other pathways in fibril formation remains unclear. We investigated this question in TDP-43, a motor neuron disease and dementia-causing protein that undergoes LLPS, using thioflavin T (ThT) fluorescence, NMR, transmission electron microscopy (TEM), and wide-angle X-ray scattering (WAXS) experiments. Using a fluorescence probe modified from ThT strategically designed for targeting protein assembly rather than β-sheets and supported by TEM images, we propose that the biphasic ThT signals observed under LLPS-favoring conditions are due to the presence of amorphous aggregates. These aggregates represent an intermediate state that diverges from the direct pathway to β-sheet-dominant fibrils. Under non-LLPS conditions in contrast (at low pH or at physiological conditions in a construct with key LLPS residues removed), the protein forms a hydrogel. Real-time WAXS data, ThT signals, and TEM images collectively demonstrate that the gelation process circumvents LLPS and yet still results in the formation of fibril-like structural networks. We suggest that the IDR of TDP-43 forms disease-causing amyloid fibrils regardless of the formation pathway. Our findings shed light on why both LLPS-promoting and LLPS-inhibiting mutants are found in TDP-43-related diseases.
Collapse
Affiliation(s)
- Pin-Han Lin
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, No. 155 Section 2, Li-nong Street, Taipei 11221, Taiwan
| | - Guan-Wei Wu
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, No. 155 Section 2, Li-nong Street, Taipei 11221, Taiwan
| | - Yu-Hao Lin
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, No. 155 Section 2, Li-nong Street, Taipei 11221, Taiwan
| | - Jing-Rou Huang
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, No. 155 Section 2, Li-nong Street, Taipei 11221, Taiwan
| | - U-Ser Jeng
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Wei-Min Liu
- Department
of Chemistry, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 24205, Taiwan
| | - Jie-rong Huang
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, No. 155 Section 2, Li-nong Street, Taipei 11221, Taiwan
- Institute
of Biomedical Informatics, National Yang
Ming Chiao Tung University, No. 155 Section 2, Li-nong Street, Taipei 11221, Taiwan
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155 Section 2, Li-nong Street, Taipei 11221, Taiwan
| |
Collapse
|
2
|
Cingolani M, Lugli F, Zaffagnini M, Genovese D. Fluorogenic Hyaluronan Nanogels Track Individual Early Protein Aggregates Originated under Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3056-3063. [PMID: 38194274 PMCID: PMC10811615 DOI: 10.1021/acsami.3c13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Proteins are broadly versatile biochemical materials, whose functionality is tightly related to their folding state. Native folding can be lost to yield misfolded conformations, often leading to formation of protein oligomers, aggregates, and biomolecular phase condensates. The fluorogenic hyaluronan HA-RB, a nonsulfonated glycosaminoglycan with a combination of polyanionic character and of hydrophobic spots due to rhodamine B dyes, binds to early aggregates of the model protein cytoplasmic glyceraldehyde-3-phosphate dehydrogenase 1 from Arabidopsis thaliana (AtGAPC1) since the very onset of the oligomeric phase, making them brightly fluorescent. This initial step of aggregation has, until now, remained elusive with other fluorescence- or scattering-based techniques. The information gathered from nanotracking (via light-sheet fluorescence microscopy) and from FCS in a confocal microscope converges to highlight the ability of HA-RB to bind protein aggregates from the very early steps of aggregation and with high affinity. Altogether, this fluorescence-based approach allows one to monitor and track individual early AtGAPC1 aggregates in the size range from 10 to 100 nm with high time (∼10-2 s) and space (∼250 nm) resolution.
Collapse
Affiliation(s)
- Matteo Cingolani
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| | - Francesca Lugli
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| | - Mirko Zaffagnini
- Dipartimento
di Farmacia e Biotecnologie, Università
di Bologna, 40126 Bologna, Italy
| | - Damiano Genovese
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| |
Collapse
|
3
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
4
|
Lin PH, Tsai CS, Hsu CC, Lee IR, Shen YX, Fan HF, Chen YW, Tu LH, Liu WM. An environmentally sensitive molecular rotor as a NIR fluorescent probe for the detection of islet amyloid polypeptide. Talanta 2023; 254:124130. [PMID: 36462286 DOI: 10.1016/j.talanta.2022.124130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
The deposits of human islet amyloid polypeptide (IAPP), also called amylin, in the pancreas have been postulated to be a factor of pancreatic β-cell dysfunction and is one of the common pathological hallmarks of type II diabetes mellitus (T2DM). Therefore, it is imperative to gain an in-depth understanding of the formation of these aggregates. In this study, we demonstrate a rationally-designed strategy of an environmentally sensitive near-infrared (NIR) molecular rotor utilizing thioflavin T (ThT) as a scaffold for IAPP deposits. We extended the π delocalized system not only to improve the viscosity sensitivity but also to prolong the emission wavelength to the NIR region. A naphthalene moiety was also introduced to adjust the sensitivity of our designed probes to differentiate the binding microenvironment polarity of different targeted proteins. As a result, a novel NIR fluorogenic probe toward IAPP aggregates, namely AmySP-4-Nap-Ene, was first developed. When attached to different protein aggregates, this probe exhibited distinct fluorescence emission profiles. In a comparison with ThT, the fluorescence emission of non-ionic AmySP-4-Nap-Ene exhibits a significant difference between the presence of non-fibrillar and fibrillar IAPP and displays a higher binding affinity toward IAPP fibrils. Further, the AmySP-4-Nap-Ene can be utilized to monitor IAPP accumulating process and image fibrils both in vitro and in living cells.
Collapse
Affiliation(s)
- Pin-Han Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, ROC
| | - Chang-Shun Tsai
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC
| | - Chia-Chien Hsu
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC
| | - I-Ren Lee
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC; Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Yu-Xin Shen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan, ROC
| | - Hsiu-Fang Fan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan, ROC
| | - Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC.
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, ROC.
| |
Collapse
|
5
|
Nie T, Cooper GJS. Mechanisms Underlying the Antidiabetic Activities of Polyphenolic Compounds: A Review. Front Pharmacol 2021; 12:798329. [PMID: 34970150 PMCID: PMC8712966 DOI: 10.3389/fphar.2021.798329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenolic compounds are thought to show considerable promise for the treatment of various metabolic disorders, including type 2 diabetes mellitus (T2DM). This review addresses evidence from in vitro, in vivo, and clinical studies for the antidiabetic effects of certain polyphenolic compounds. We focus on the role of cytotoxic human amylin (hA) aggregates in the pathogenesis of T2DM, and how polyphenols can ameliorate this process by suppressing or modifying their formation. Small, soluble amylin oligomers elicit cytotoxicity in pancreatic islet β-cells and may thus cause β-cell disruption in T2DM. Amylin oligomers may also contribute to oxidative stress and inflammation that lead to the triggering of β-cell apoptosis. Polyphenols may exert antidiabetic effects via their ability to inhibit hA aggregation, and to modulate oxidative stress, inflammation, and other pathways that are β-cell-protective or insulin-sensitizing. There is evidence that their ability to inhibit and destabilize self-assembly by hA requires aromatic molecular structures that bind to misfolding monomers or oligomers, coupled with adjacent hydroxyl groups present on single phenyl rings. Thus, these multifunctional compounds have the potential to be effective against the pleiotropic mechanisms of T2DM. However, substantial further research will be required before it can be determined whether a polyphenol-based molecular entity can be used as a therapeutic for type 2 diabetes.
Collapse
Affiliation(s)
- Tina Nie
- School of Biological Sciences, Faculty of Science, the University of Auckland, Auckland, New Zealand
| | - Garth J. S. Cooper
- School of Biological Sciences, Faculty of Science, the University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, the University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, Faculty of Biology Medicine & Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Cingolani M, Mummolo L, Lugli F, Zaffagnini M, Genovese D. Protein aggregation detection with fluorescent macromolecular and nanostructured probes: challenges and opportunities. NEW J CHEM 2021. [DOI: 10.1039/d1nj01606g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoprobes based on various nanomaterials, polymers or AIEgens are overcoming previous limitations for diagnosis and therapy of early-stage protein aggregation.
Collapse
Affiliation(s)
- Matteo Cingolani
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - Liviana Mummolo
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - Francesca Lugli
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - Mirko Zaffagnini
- Dipartimento di Farmacia e Biotecnologia
- Università di Bologna
- 40126 Bologna
- Italy
| | - Damiano Genovese
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| |
Collapse
|
7
|
Andrikopoulos N, Li Y, Cecchetto L, Nandakumar A, Da Ros T, Davis TP, Velonia K, Ke PC. Nanomaterial synthesis, an enabler of amyloidosis inhibition against human diseases. NANOSCALE 2020; 12:14422-14440. [PMID: 32638780 DOI: 10.1039/d0nr04273k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloid diseases are global epidemics with no cure currently available. In the past decade, the use of engineered nanomaterials as inhibitors or probes against the pathogenic aggregation of amyloid peptides and proteins has emerged as a new frontier in nanomedicine. In this Minireview, we summarize for the first time the pivotal role of chemical synthesis in enabling the development of this multidisciplinary field.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Luca Cecchetto
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia.
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|