1
|
Chen S, Dedkova LM, Hecht SM. Biological Regulation Studied in Vitro and in Cellulo with Modified Proteins. Acc Chem Res 2025; 58:1109-1119. [PMID: 40072328 PMCID: PMC11964198 DOI: 10.1021/acs.accounts.5c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
ConspectusProteins and peptides occur ubiquitously in organisms and play key functional roles, as structural elements and catalysts. Their major natural source is ribosomal synthesis, which produces polypeptides from 20 amino acid building blocks. Peptides containing noncanonical amino acids have long been prepared by chemical synthesis, which has provided a wealth of physiologically active compounds. Comparatively, preparing modified proteins has been more challenging. Site-directed mutagenesis provided an important advance but was initially limited to canonical amino acids. New techniques for tRNA activation with noncanonical amino acids subsequently increased the scope of site-directed mutagenesis.Our report in 2012 demonstrated that modification of bacterial ribosomes at key positions enabled the selection of ribosomes capable of introducing β-amino acids into proteins in vitro. The generality of the selection procedure was tested further. Ribosomes capable of incorporating dipeptides, conformationally constrained dipeptides, dipeptidometics with embedded fluorophores, contiguous nucleobase amino acids, and phosphorylated amino acids were successfully identified.In this Account, we focus on the application of the new technology to dramatically alter protein structure in ways that enable new strategies for understanding and altering protein function. To illustrate the robustness of the technology we have provided examples studied in vitro and in cellulo. The first category involves the introduction of nucleobase amino acids into proteins in support of specific interactions with RNA and DNA. The energetic differences between potential protein-nucleic acid complexes formed from two binding partners are often quite small. It seems logical to think that selective binding can be achieved by using a nucleobase moiety in each of the binding partners by utilizing known interactions between nucleic acid bases (located in the protein and nucleic acid) to achieve energetically favorable interactions. We do so both in vitro and in cellulo. A second focus has involved the design of small fluorescent probes not much larger than amino acids that are genetically encodable and which can be incorporated during protein biosynthesis, serving as detectable probes of protein trafficking and interaction with other macromolecules. We provide an in vitro example of strongly fluorescent tryptophan analogues positioned at single sites within dihydrofolate reductase, permitting selective communication with a FRET acceptor at a known position, even in the presence of several tryptophans. An oxazole amino acid, weakly fluorescent in aqueous solution, fluoresced more strongly following incorporation into MreB, a scaffold protein produced in cellulo. Finally, we describe the introduction of a single phosphorylated tyrosine into the p50 subunit of NF-κB. When present at either of two key positions, the resulting NF-κB significantly enhanced binding in vitro to the promoter DNA as well as subsequent mRNA transcription of its client protein CD40 in cellulo. In a separate expression in activated Jurkat cells, an increased production of CD40 protein was observed.
Collapse
Affiliation(s)
- Shengxi Chen
- Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M. Dedkova
- Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Daskalova SM, Dedkova LM, Maini R, Talukder P, Bai X, Chowdhury SR, Zhang C, Nangreave RC, Hecht SM. Elongation Factor P Modulates the Incorporation of Structurally Diverse Noncanonical Amino Acids into Escherichia coli Dihydrofolate Reductase. J Am Chem Soc 2023; 145:23600-23608. [PMID: 37871253 PMCID: PMC10762953 DOI: 10.1021/jacs.3c07524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The introduction of noncanonical amino acids into proteins and peptides has been of great interest for many years and has facilitated the detailed study of peptide/protein structure and mechanism. In addition to numerous nonproteinogenic α-l-amino acids, bacterial ribosome modification has provided the wherewithal to enable the synthesis of peptides and proteins with a much greater range of structural diversity, as has the use of endogenous bacterial proteins in reconstituted protein synthesizing systems. In a recent report, elongation factor P (EF-P), putatively essential for enabling the incorporation of contiguous proline residues into proteins, was shown to facilitate the introduction of an N-methylated amino acid in addition to proline. This finding prompted us to investigate the properties of this protein factor with a broad variety of structurally diverse amino acid analogues using an optimized suppressor tRNAPro that we designed. While these analogues can generally be incorporated into proteins only in systems containing modified ribosomes specifically selected for their incorporation, we found that EF-P could significantly enhance their incorporation into model protein dihydrofolate reductase using wild-type ribosomes. Plausibly, the increased yields observed in the presence of structurally diverse amino acid analogues may result from the formation of a stabilized ribosomal complex in the presence of EF-P that provides more favorable conditions for peptide bond formation. This finding should enable the facile incorporation of a much broader structural variety of amino acid analogues into proteins and peptides using native ribosomes.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Rumit Maini
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Poulami Talukder
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sandipan Roy Chowdhury
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chao Zhang
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan C Nangreave
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Hecht SM. Expansion of the Genetic Code Through the Use of Modified Bacterial Ribosomes. J Mol Biol 2022; 434:167211. [PMID: 34419431 PMCID: PMC9990327 DOI: 10.1016/j.jmb.2021.167211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Biological protein synthesis is mediated by the ribosome, and employs ~20 proteinogenic amino acids as building blocks. Through the use of misacylated tRNAs, presently accessible by any of several strategies, it is now possible to employ in vitro and in vivo protein biosynthesis to elaborate proteins containing a much larger variety of amino acid building blocks. However, the incorporation of this broader variety of amino acids is limited to those species utilized by the ribosome. As a consequence, virtually all of the substrates utilized over time have been L-α-amino acids. In recent years, a variety of structural and biochemical studies have provided important insights into those regions of the 23S ribosomal RNA that are involved in peptide bond formation. Subsequent experiments, involving the randomization of key regions of 23S rRNA required for peptide bond formation, have afforded libraries of E. coli harboring plasmids with the rrnB gene modified in the key regions. Selections based on the use of modified puromycin derivatives with altered amino acids then identified clones uniquely sensitive to individual puromycin derivatives. These clones often recognized misacylated tRNAs containing altered amino acids similar to those in the modified puromycins, and incorporated the amino acid analogues into proteins. In this fashion, it has been possible to realize the synthesis of proteins containing D-amino acids, β-amino acids, phosphorylated amino acids, as well as long chain and cyclic amino acids in which the nucleophilic amino group is not in the α-position. Of special interest have been dipeptides and dipeptidomimetics of diverse utility.
Collapse
Affiliation(s)
- Sidney M Hecht
- Center for BioEnergetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
4
|
Zhang C, Talukder P, Dedkova LM, Hecht SM. Facilitated synthesis of proteins containing modified dipeptides. Bioorg Med Chem 2021; 41:116210. [PMID: 34022527 DOI: 10.1016/j.bmc.2021.116210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
The elaboration of peptides and proteins containing non-proteinogenic amino acids has been realized using several complementary strategies, including chemical synthesis, ribosome- or non-ribosome-mediated elaboration, intein-mediated polypeptide rearrangements, or some combination of these strategies. All of these have strengths and limitations, and significant efforts have been focused on minimizing the effects of limitations, to improve the overall utility of individual strategies. Our laboratory has studied ribosomally mediated peptide and protein synthesis involving a wide variety of non-proteinogenic amino acids, and in recent years we have described a novel strategy for the selection of modified bacterial ribosomes. These modified ribosomes have enabled the incorporation into peptides and proteins of numerous modified amino acids not accessible using wild-type ribosomes. This has included d-amino acids, β-amino acids, dipeptides and dipeptidomimetic species, as well as phosphorylated amino acids. Presently, we have considered novel strategies for incorporating non-proteinogenic amino acids in improved yields. This has included the incorporation of non-proteinogenic amino acids into contiguous positions, a transformation known to be challenging. We demonstrate the preparation of this type of protein modification by utilizing a suppressor tRNACUA activated with a dipeptide consisting of two identical non-proteinogenic amino acids, in the presence of modified ribosomes selected to recognize such dipeptides. Also, we demonstrate that the use of bis-aminoacylated suppressor tRNAs, shown previously to increase protein yields significantly in vitro, can be extended to the use of non-proteinogenic amino acids.
Collapse
Affiliation(s)
- Chao Zhang
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Poulami Talukder
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
5
|
Corbella M, Liao Q, Moreira C, Parracino A, Kasson PM, Kamerlin SCL. The N-terminal Helix-Turn-Helix Motif of Transcription Factors MarA and Rob Drives DNA Recognition. J Phys Chem B 2021; 125:6791-6806. [PMID: 34137249 PMCID: PMC8279559 DOI: 10.1021/acs.jpcb.1c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
DNA-binding proteins
play an important role in gene regulation
and cellular function. The transcription factors MarA and Rob are
two homologous members of the AraC/XylS family that regulate multidrug
resistance. They share a common DNA-binding domain, and Rob possesses
an additional C-terminal domain that permits binding of low-molecular
weight effectors. Both proteins possess two helix-turn-helix (HTH)
motifs capable of binding DNA; however, while MarA interacts with
its promoter through both HTH-motifs, prior studies indicate that
Rob binding to DNA via a single HTH-motif is sufficient for tight
binding. In the present work, we perform microsecond time scale all-atom
simulations of the binding of both transcription factors to different
DNA sequences to understand the determinants of DNA recognition and
binding. Our simulations characterize sequence-dependent changes in
dynamical behavior upon DNA binding, showcasing the role of Arg40
of the N-terminal HTH-motif in allowing for specific tight binding.
Finally, our simulations demonstrate that an acidic C-terminal loop
of Rob can control the DNA binding mode, facilitating interconversion
between the distinct DNA binding modes observed in MarA and Rob. In
doing so, we provide detailed molecular insight into DNA binding and
recognition by these proteins, which in turn is an important step
toward the efficient design of antivirulence agents that target these
proteins.
Collapse
Affiliation(s)
- Marina Corbella
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, S-751 23, Sweden
| | - Qinghua Liao
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, S-751 23, Sweden
| | - Cátia Moreira
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, S-751 23, Sweden
| | - Antonietta Parracino
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, S-751 23, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, S-65124, Sweden.,Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | | |
Collapse
|
6
|
Pomplun S, Gates ZP, Zhang G, Quartararo AJ, Pentelute BL. Discovery of Nucleic Acid Binding Molecules from Combinatorial Biohybrid Nucleobase Peptide Libraries. J Am Chem Soc 2020; 142:19642-19651. [PMID: 33166454 DOI: 10.1021/jacs.0c08964] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nature has three biopolymers: oligonucleotides, polypeptides, and oligosaccharides. Each biopolymer has independent functions, but when needed, they form mixed assemblies for higher-order purposes, as in the case of ribosomal protein synthesis. Rather than forming large complexes to coordinate the role of different biopolymers, we dovetail protein amino acids and nucleobases into a single low molecular weight precision polyamide polymer. We established efficient chemical synthesis and de novo sequencing procedures and prepared combinatorial libraries with up to 100 million biohybrid molecules. This biohybrid material has a higher bulk affinity to oligonucleotides than peptides composed exclusively of canonical amino acids. Using affinity selection mass spectrometry, we discovered variants with a high affinity for pre-microRNA hairpins. Our platform points toward the development of high throughput discovery of sequence defined polymers with designer properties, such as oligonucleotide binding.
Collapse
Affiliation(s)
- Sebastian Pomplun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zachary P Gates
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Genwei Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anthony J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
7
|
Ferrand A, Vergalli J, Pagès JM, Davin-Regli A. An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae. Microorganisms 2020; 8:E833. [PMID: 32492979 PMCID: PMC7355843 DOI: 10.3390/microorganisms8060833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille University, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; (A.F.); (J.V.); (J.-M.P.)
| |
Collapse
|
8
|
Zhang C, Chen S, Dedkova LM, Hecht SM. Effects of Nucleobase Amino Acids on the Binding of Rob to Its Promoter DNA: Differential Alteration of DNA Affinity and Phenotype. Biochemistry 2020; 59:2111-2119. [PMID: 32412234 DOI: 10.1021/acs.biochem.0c00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nucleic acid binding proteins have been studied extensively, but the nature of the interactions that control their affinity, selectivity, and DNA and RNA functions is still not well understood. To understand the nature and functional consequences of such interactions, we introduced nucleobase amino acids at specific positions of the transcriptional regulator Rob protein in vivo and succeeded in demonstrating that an alteration of the protein-DNA affinity can affect specific phenotypes associated with Rob protein-DNA interactions. Previously, we inserted different nucleobase amino acids in lieu of Arg40; this residue is known (via X-ray crystallography) to interact with the micF DNA promoter A-box residue Gua6. The interactions predominantly involved Watson-Crick-like H bonding. The present study focused primarily on the micF DNA promoter B-box; the crystallographically determined interaction involves H bonding between the agmatine moiety of Arg90 within an HTH motif of Rob and a phosphate oxygen anion to the 5'-side of Thy14. We had two main goals, the first of which was to demonstrate enhanced Rob-binding to the micF promoter DNA and the functional consequences resulting from the interaction of micF DNA with Rob analogues containing Arg90 nucleobase mimics. The second was to explore the possible functional consequences of enhancing the protein-DNA affinity with nucleobase replacements, which mechanistically mediate interactions differently than those reported to be operative for specific protein-DNA interactions. Nucleobase replacement at position 90 with Arg isosteres enhanced the Rob protein-micF DNA affinity in parallel with increasing antibiotic and Hg2+ resistance, while aromatic amino acid replacements increased the affinity but not the antibiotic or Hg2+ resistance. The demonstration of an increased affinity through strong base stacking interactions was notable.
Collapse
|