1
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
2
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
3
|
Beatty KE, López CS. Characteristics of genetic tags for correlative light and electron microscopy. Curr Opin Chem Biol 2023; 76:102369. [PMID: 37453163 DOI: 10.1016/j.cbpa.2023.102369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Fluorescence microscopy is indispensable in live cell studies of fluorescently-labeled proteins, but has limited resolution and context. Electron microscopy offers high-resolution imaging of cellular ultrastructure, including membranes, organelles, and other nanoscale features. However, identifying proteins by EM remains a substantial challenge. There is potential to combine the strengths of both FM and EM through correlative light and EM (CLEM), and bridging the two modalities enables new discoveries and biological insights. CLEM enables cellular proteins to be observed dynamically, across size scales, and in relationship to sub-cellular structures. A central limitation to using CLEM is the scarcity of methods for labeling proteins with CLEM reporters. This review will describe the characteristics of genetic tags for CLEM that are available today, including fixation-resistant fluorescent proteins, 3,3'-diaminobenzidine (DAB)-based tags, metal-chelating tags, DNA origami tags, and VIP tags.
Collapse
Affiliation(s)
- Kimberly E Beatty
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Claudia S López
- Department of Biomedical Engineering Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
4
|
Suyama A, Devlin KL, Macias-Contreras M, Doh JK, Shinde U, Beatty KE. Orthogonal Versatile Interacting Peptide Tags for Imaging Cellular Proteins. Biochemistry 2023; 62:1735-1743. [PMID: 37167569 PMCID: PMC10249344 DOI: 10.1021/acs.biochem.2c00712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Genetic tags are transformative tools for investigating the function, localization, and interactions of cellular proteins. Most studies today are reliant on selective labeling of more than one protein to obtain comprehensive information on a protein's behavior in situ. Some proteins can be analyzed by fusion to a protein tag, such as green fluorescent protein, HaloTag, or SNAP-Tag. Other proteins benefit from labeling via small peptide tags, such as the recently reported versatile interacting peptide (VIP) tags. VIP tags enable observations of protein localization and trafficking with bright fluorophores or nanoparticles. Here, we expand the VIP toolkit by presenting two new tags: TinyVIPER and PunyVIPER. These two tags were designed for use with MiniVIPER for labeling up to three distinct proteins at once in cells. Labeling is mediated by the formation of a high-affinity, biocompatible heterodimeric coiled coil. Each tag was validated by fluorescence microscopy, including observation of transferrin receptor 1 trafficking in live cells. We verified that labeling via each tag is highly specific for one- or two-color imaging. Last, the self-sorting tags were used for simultaneous labeling of three protein targets (i.e., TOMM20, histone 2B, and actin) in fixed cells, highlighting their utility for multicolor microscopy. MiniVIPER, TinyVIPER, and PunyVIPER are small and robust peptide tags for selective labeling of cellular proteins.
Collapse
Affiliation(s)
| | | | - Miguel Macias-Contreras
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| | - Julia K. Doh
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| | - Ujwal Shinde
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| | - Kimberly E. Beatty
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| |
Collapse
|
5
|
Wolf P, Mohr A, Gavins G, Behr V, Mörl K, Seitz O, Beck-Sickinger AG. Orthogonal Peptide-Templated Labeling Elucidates Lateral ET A R/ET B R Proximity and Reveals Altered Downstream Signaling. Chembiochem 2021; 23:e202100340. [PMID: 34699123 PMCID: PMC9298254 DOI: 10.1002/cbic.202100340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/03/2021] [Indexed: 12/21/2022]
Abstract
Fine‐tuning of G protein‐coupled receptor (GPCR) signaling is important to maintain cellular homeostasis. Recent studies demonstrated that lateral GPCR interactions in the cell membrane can impact signaling profiles. Here, we report on a one‐step labeling method of multiple membrane‐embedded GPCRs. Based on short peptide tags, complementary probes transfer the cargo (e. g. a fluorescent dye) by an acyl transfer reaction with high spatial and temporal resolution within 5 min. We applied this approach to four receptors of the cardiovascular system: the endothelin receptor A and B (ETAR and ETBR), angiotensin II receptor type 1, and apelin. Wild type‐like G protein activation after N‐terminal modification was demonstrated for all receptor species. Using FRET‐competent dyes, a constitutive proximity between hetero‐receptors was limited to ETAR/ETBR. Further, we demonstrate, that ETAR expression regulates the signaling of co‐expressed ETBR. Our orthogonal peptide‐templated labeling of different GPCRs provides novel insight into the regulation of GPCR signaling.
Collapse
Affiliation(s)
- Philipp Wolf
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Alexander Mohr
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Georgina Gavins
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Victoria Behr
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Karin Mörl
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Oliver Seitz
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Annette G Beck-Sickinger
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| |
Collapse
|
6
|
Gavins GC, Gröger K, Reimann M, Bartoschek MD, Bultmann S, Seitz O. Orthogonal coiled coils enable rapid covalent labelling of two distinct membrane proteins with peptide nucleic acid barcodes. RSC Chem Biol 2021; 2:1291-1295. [PMID: 34458843 PMCID: PMC8341593 DOI: 10.1039/d1cb00126d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Templated chemistry offers the prospect of addressing specificity challenges occurring in bioconjugation reactions. Here, we show two peptide-templated amide-bond forming reactions that enable the concurrent labelling of two different membrane proteins with two different peptide nucleic acid (PNA) barcodes. The reaction system is based on the mutually selective coiled coil interaction between two thioester-linked PNA–peptide conjugates and two cysteine peptides serving as genetically encoded peptide tags. Orthogonal coiled coil templated covalent labelling is highly specific, quantitative and proceeds within a minute. To demonstrate the usefulness, we evaluated receptor internalisation of two membranous receptors EGFR (epidermal growth factor) and ErbB2 (epidermal growth factor receptor 2) by first staining PNA-tagged proteins with fluorophore–DNA conjugates and then erasing signals from non-internalized receptors via toehold-mediated strand displacement. A pair of orthogonal coiled coils templates highly specific live cell bioconjugation of two different proteins. PNA tagging and hybridisation with fluorophore–DNA reporters enables rapid dual receptor internalisation analysis of EGFR and ErbB2.![]()
Collapse
Affiliation(s)
- Georgina C Gavins
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| | - Katharina Gröger
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| | - Marc Reimann
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| | - Michael D Bartoschek
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 1 Munich 81377 Germany
| | - Sebastian Bultmann
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 1 Munich 81377 Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| |
Collapse
|
7
|
Wolf P, Gavins G, Beck‐Sickinger AG, Seitz O. Strategies for Site-Specific Labeling of Receptor Proteins on the Surfaces of Living Cells by Using Genetically Encoded Peptide Tags. Chembiochem 2021; 22:1717-1732. [PMID: 33428317 PMCID: PMC8248378 DOI: 10.1002/cbic.202000797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Fluorescence microscopy imaging enables receptor proteins to be investigated within their biological context. A key challenge is to site-specifically incorporate reporter moieties into proteins without interfering with biological functions or cellular networks. Small peptide tags offer the opportunity to combine inducible labeling with small tag sizes that avoid receptor perturbation. Herein, we review the current state of live-cell labeling of peptide-tagged cell-surface proteins. Considering their importance as targets in medicinal chemistry, we focus on membrane receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We discuss peptide tags that i) are subject to enzyme-mediated modification reactions, ii) guide the complementation of reporter proteins, iii) form coiled-coil complexes, and iv) interact with metal complexes. Given our own contributions in the field, we place emphasis on peptide-templated labeling chemistry.
Collapse
Affiliation(s)
- Philipp Wolf
- Faculty of Life SciencesInstitute of BiochemistryLeipzig UniversityBrüderstrasse 3404103LeipzigGermany
| | - Georgina Gavins
- Faculty of Mathematics and Natural SciencesDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Annette G. Beck‐Sickinger
- Faculty of Life SciencesInstitute of BiochemistryLeipzig UniversityBrüderstrasse 3404103LeipzigGermany
| | - Oliver Seitz
- Faculty of Mathematics and Natural SciencesDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
8
|
OUP accepted manuscript. Microscopy (Oxf) 2021; 71:i72-i80. [DOI: 10.1093/jmicro/dfab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
|