1
|
Johnson K, Delaney JC, Guillard T, Reffuveille F, Varin-Simon J, Li K, Wollacott A, Frapy E, Mong S, Tissire H, Viswanathan K, Touti F, Babcock GJ, Shriver Z, Pentelute BL, Plante O, Skurnik D. Development of an antibody fused with an antimicrobial peptide targeting Pseudomonas aeruginosa: A new approach to prevent and treat bacterial infections. PLoS Pathog 2023; 19:e1011612. [PMID: 37676873 PMCID: PMC10508631 DOI: 10.1371/journal.ppat.1011612] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/19/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023] Open
Abstract
The increase in emerging drug resistant Gram-negative bacterial infections is a global concern. In addition, there is growing recognition that compromising the microbiota through the use of broad-spectrum antibiotics can impact long term patient outcomes. Therefore, there is the need to develop new bactericidal strategies to combat Gram-negative infections that would address these specific issues. In this study, we report and characterize one such approach, an antibody-drug conjugate (ADC) that combines (i) targeting the surface of a specific pathogenic organism through a monoclonal antibody with (ii) the high killing activity of an antimicrobial peptide. We focused on a major pathogenic Gram-negative bacterium associated with antibacterial resistance: Pseudomonas aeruginosa. To target this organism, we designed an ADC by fusing an antimicrobial peptide to the C-terminal end of the VH and/or VL-chain of a monoclonal antibody, VSX, that targets the core of P. aeruginosa lipopolysaccharide. This ADC demonstrates appropriately minimal levels of toxicity against mammalian cells, rapidly kills P. aeruginosa strains, and protects mice from P. aeruginosa lung infection when administered therapeutically. Furthermore, we found that the ADC was synergistic with several classes of antibiotics. This approach described in this study might result in a broadly useful strategy for targeting specific pathogenic microorganisms without further augmenting antibiotic resistance.
Collapse
Affiliation(s)
- Kenneth Johnson
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - James C. Delaney
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - Thomas Guillard
- Inserm UMR-S 1250 P3 Cell, Université de Reims-Champagne-Ardenne, Reims, France
| | - Fany Reffuveille
- Inserm UMR-S 1250 P3 Cell, Université de Reims-Champagne-Ardenne, Reims, France
| | | | - Kai Li
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - Andrew Wollacott
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - Eric Frapy
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France
| | - Surin Mong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Hamid Tissire
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | | | - Faycal Touti
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Zachary Shriver
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Obadiah Plante
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - David Skurnik
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France
- Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris City, Paris, France
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Sorieul C, Dolce M, Romano MR, Codée J, Adamo R. Glycoconjugate vaccines against antimicrobial resistant pathogens. Expert Rev Vaccines 2023; 22:1055-1078. [PMID: 37902243 DOI: 10.1080/14760584.2023.2274955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is responsible for the death of millions worldwide and stands as a major threat to our healthcare systems, which are heavily reliant on antibiotics to fight bacterial infections. The development of vaccines against the main pathogens involved is urgently required as prevention remains essential against the rise of AMR. AREAS COVERED A systematic research review was conducted on MEDLINE database focusing on the six AMR pathogens defined as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli), which are considered critical or high priority pathogens by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). The analysis was intersecated with the terms carbohydrate, glycoconjugate, bioconjugate, glyconanoparticle, and multiple presenting antigen system vaccines. EXPERT OPINION Glycoconjugate vaccines have been successful in preventing meningitis and pneumoniae, and there are high expectations that they will play a key role in fighting AMR. We herein discuss the recent technological, preclinical, and clinical advances, as well as the challenges associated with the development of carbohydrate-based vaccines against leading AMR bacteria, with focus on the ESKAPE pathogens. The need of innovative clinical and regulatory approaches to tackle these targets is also highlighted.
Collapse
Affiliation(s)
- Charlotte Sorieul
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marta Dolce
- GSK, Via Fiorentina 1, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
3
|
Cairns CM, Michael FS, Jamshidi M, van Faassen H, Yang Q, Henry KA, Hussack G, Sauvageau J, Vinogradov EV, Cox AD. Structural Characterization and Evaluation of an Epitope at the Tip of the A-Band Rhamnan Polysaccharide of Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1336-1346. [PMID: 35653593 DOI: 10.1021/acsinfecdis.2c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa produces a variety of cell surface glycans. Previous studies identified a common polysaccharide (PS) antigen often termed A-band PS that was composed of a neutral d-rhamnan trisaccharide repeating unit as a relatively conserved cell surface carbohydrate. However, nuclear magnetic resonance (NMR) spectra and chemical analysis of A-PS preparations showed the presence of several additional components. Here, we report the characterization of the carbohydrate component responsible for these signals. The carbohydrate antigen consists of an immunogenic methylated rhamnan oligosaccharide at the nonreducing end of the A-band PS. Initial studies performed with the isolated antigen permitted the production of conjugates that were used to immunize mice and rabbits and generate monoclonal and polyclonal antibodies. The polyclonal antibodies were able to recognize the majority of P. aeruginosa strains in our collection, and three monoclonal antibodies were generated, one of which was able to recognize and facilitate opsonophagocytic killing of a majority of P. aeruginosa strains. This monoclonal antibody was able to recognize all P. aeruginosa strains in our collection that includes clinical and serotype strains. Synthetic oligosaccharides (mono- to pentasaccharides) representing the terminal 3-O-methyl d-rhamnan were prepared, and the trisaccharide was identified as the antigenic determinant required to effectively mimic the natural antigen recognized by the broadly cross-reactive monoclonal antibody. These data suggest that there is considerable promise in this antigen as a vaccine or therapeutic target.
Collapse
Affiliation(s)
- Chantelle M. Cairns
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Frank St. Michael
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Mohammad Jamshidi
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Henk van Faassen
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Qingling Yang
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Kevin A. Henry
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Greg Hussack
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Janelle Sauvageau
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Evgeny V. Vinogradov
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Andrew D. Cox
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|