1
|
Sánchez-Alba L, Borràs-Gas H, Huang G, Varejão N, Reverter D. Structural diversity of the CE-clan proteases in bacteria to disarm host ubiquitin defenses. Trends Biochem Sci 2024; 49:1111-1123. [PMID: 39343712 DOI: 10.1016/j.tibs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
Ubiquitin (Ub) and ubiquitin-like (UbL) modifications are critical regulators of multiple cellular processes in eukaryotes. These modifications are dynamically controlled by proteases that balance conjugation and deconjugation. In eukaryotes, these proteases include deubiquitinases (DUBs), mostly belonging to the CA-clan of cysteine proteases, and ubiquitin-like proteases (ULPs), belonging to the CE-clan proteases. Intriguingly, infectious bacteria exploit the CE-clan protease fold to generate deubiquitinating activities to disarm the immune system and degradation defenses of the host during infection. In this review, we explore the substrate preferences encoded within the CE-clan proteases and the structural determinants in the protease fold behind its selectivity, in particular those from infectious bacteria and viruses. Understanding this protease family provides crucial insights into the molecular mechanisms underlying infection and transmission of pathogenic organisms.
Collapse
Affiliation(s)
- Lucía Sánchez-Alba
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Helena Borràs-Gas
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Ge Huang
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Nathalia Varejão
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - David Reverter
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
2
|
Duan C, Mooney T, Buerer L, Bowers C, Rong S, Kim SW, Fredericks AM, Monaghan SF, Fairbrother WG. The unusual gene architecture of polyubiquitin is created by dual-specific splice sites. Genome Biol 2024; 25:33. [PMID: 38268025 PMCID: PMC10809524 DOI: 10.1186/s13059-023-03157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The removal of introns occurs through the splicing of a 5' splice site (5'ss) with a 3' splice site (3'ss). These two elements are recognized by distinct components of the spliceosome. However, introns in higher eukaryotes contain many matches to the 5' and 3' splice-site motifs that are presumed not to be used. RESULTS Here, we find that many of these sites can be used. We also find occurrences of the AGGT motif that can function as either a 5'ss or a 3'ss-previously referred to as dual-specific splice sites (DSSs)-within introns. Analysis of the Sequence Read Archive reveals a 3.1-fold enrichment of DSSs relative to expectation, implying synergy between the ability to function as a 5'ss and 3'ss. Despite this suggested mechanistic advantage, DSSs are 2.7- and 4.7-fold underrepresented in annotated 5' and 3' splice sites. A curious exception is the polyubiquitin gene UBC, which contains a tandem array of DSSs that precisely delimit the boundary of each ubiquitin monomer. The resulting isoforms splice stochastically to include a variable number of ubiquitin monomers. We found no evidence of tissue-specific or feedback regulation but note the 8.4-fold enrichment of DSS-spliced introns in tandem repeat genes suggests a driving role in the evolution of genes like UBC. CONCLUSIONS We find an excess of unannotated splice sites and the utilization of DSSs in tandem repeats supports the role of splicing in gene evolution. These findings enhance our understanding of the diverse and complex nature of the splicing process.
Collapse
Affiliation(s)
- Chaorui Duan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Truman Mooney
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Luke Buerer
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Cory Bowers
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Stephen Rong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02903, USA
| | - Seong Won Kim
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | | | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, 02903, USA
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
3
|
Negron Teron KI, Das C. Cocrystallization of ubiquitin-deubiquitinase complexes through disulfide linkage. Acta Crystallogr D Struct Biol 2023; 79:1044-1055. [PMID: 37877948 PMCID: PMC10619426 DOI: 10.1107/s2059798323008501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Structural characterization of the recognition of ubiquitin (Ub) by deubiquitinases (DUBs) has largely relied on covalent complexation of the DUB through its catalytic cysteine with a Ub C-terminal electrophile. The Ub electrophiles are accessed through intein chemistry in conjunction with chemical synthesis. Here, it was asked whether DUB-Ub covalent complexes could instead be accessed by simpler disulfide chemistry using a Ub cysteine mutant in which the last glycine has been replaced with a cysteine. The Ub cysteine mutant displayed a wide variability in disulfide formation across a panel of eukaryotic and prokaryotic DUBs, with some showing no detectable reaction while others robustly produced a disulfide complex. Using this approach, two disulfide-linked ubiquitin-bound complexes were crystallized, one involving the Legionella pneumophila effector SdeA DUB and the other involving the Orientia effector OtDUB. These DUBs had previously been crystallized in Ub-bound forms using the C-terminal electrophile strategy and noncovalent complexation, respectively. While the disulfide-linked SdeA DUB-Ub complex crystallized as expected, in the OtDUB complex the disulfide bond to the Ub mutant involved a cysteine that differed from the catalytic cysteine. Disulfide formation with the SdeA DUB catalytic cysteine was accompanied by local distortion of the helix carrying the active-site cysteine, whereas OtDUB reacted with the Ub mutant using a surface-exposed cysteine.
Collapse
Affiliation(s)
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
5
|
Hewitt CS, Das C, Flaherty DP. Rational Development and Characterization of a Ubiquitin Variant with Selectivity for Ubiquitin C-Terminal Hydrolase L3. Biomolecules 2022; 12:biom12010062. [PMID: 35053210 PMCID: PMC8773573 DOI: 10.3390/biom12010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 01/12/2023] Open
Abstract
There is currently a lack of reliable methods and strategies to probe the deubiquitinating enzyme UCHL3. Current small molecules reported for this purpose display reduced potency and selectivity in cellular assays. To bridge this gap and provide an alternative approach to probe UCHL3, our group has carried out the rational design of ubiquitin-variant activity-based probes with selectivity for UCHL3 over the closely related UCHL1 and other DUBs. The approach successfully produced a triple-mutant ubiquitin variant activity-based probe, UbVQ40V/T66K/V70F-PRG, that was ultimately 20,000-fold more selective for UCHL3 over UCHL1 when assessed by rate of inactivation assays. This same variant was shown to selectively form covalent adducts with UCHL3 in MDA-MB-231 breast cancer cells and no reactivity toward other DUBs expressed. Overall, this study demonstrates the feasibility of the approach and also provides insight into how this approach may be applied to other DUB targets.
Collapse
Affiliation(s)
- Chad S. Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Chittaranjan Das
- Department of Chemistry, College of Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|