1
|
Krantz BA. Anthrax Toxin: Model System for Studying Protein Translocation. J Mol Biol 2024; 436:168521. [PMID: 38458604 DOI: 10.1016/j.jmb.2024.168521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Dedicated translocase channels are nanomachines that often, but not always, unfold and translocate proteins through narrow pores across the membrane. Generally, these molecular machines utilize external sources of free energy to drive these reactions, since folded proteins are thermodynamically stable, and once unfolded they contain immense diffusive configurational entropy. To catalyze unfolding and translocate the unfolded state at appreciable timescales, translocase channels often utilize analogous peptide-clamp active sites. Here we describe how anthrax toxin has been used as a biophysical model system to study protein translocation. The tripartite bacterial toxin is composed of an oligomeric translocase channel, protective antigen (PA), and two enzymes, edema factor (EF) and lethal factor (LF), which are translocated by PA into mammalian host cells. Unfolding and translocation are powered by the endosomal proton gradient and are catalyzed by three peptide-clamp sites in the PA channel: the α clamp, the ϕ clamp, and the charge clamp. These clamp sites interact nonspecifically with the chemically complex translocating chain, serve to minimize unfolded state configurational entropy, and work cooperatively to promote translocation. Two models of proton gradient driven translocation have been proposed: (i) an extended-chain Brownian ratchet mechanism and (ii) a proton-driven helix-compression mechanism. These models are not mutually exclusive; instead the extended-chain Brownian ratchet likely operates on β-sheet sequences and the helix-compression mechanism likely operates on α-helical sequences. Finally, we compare and contrast anthrax toxin with other related and unrelated translocase channels.
Collapse
Affiliation(s)
- Bryan A Krantz
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Yin L, Thaker H. Cancer Drug Delivery Systems Using Bacterial Toxin Translocation Mechanisms. Bioengineering (Basel) 2023; 10:813. [PMID: 37508840 PMCID: PMC10376142 DOI: 10.3390/bioengineering10070813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent advances in targeted cancer therapy hold great promise for both research and clinical applications and push the boundaries in finding new treatments for various currently incurable cancers. However, these therapies require specific cell-targeting mechanisms for the efficient delivery of drug cargo across the cell membrane to reach intracellular targets and avoid diffusion to unwanted tissues. Traditional drug delivery systems suffer from a limited ability to travel across the barriers posed by cell membranes and, therefore, there is a need for high doses, which are associated with adverse reactions and safety concerns. Bacterial toxins have evolved naturally to specifically target cell subtypes via their receptor binding module, penetrating the cell membrane efficiently through the membrane translocation process and then successfully delivering the toxic cargo into the host cytosol. They have, thus, been harnessed for the delivery of various drugs. In this review, we focus on bacterial toxin translocation mechanisms and recent progress in the targeted delivery systems of cancer therapy drugs that have been inspired by the receptor binding and membrane translocation processes of the anthrax toxin protective antigen, diphtheria toxin, and Pseudomonas exotoxin A. We also discuss the challenges and limitations of these studies that should be addressed before bacterial toxin-based drug delivery systems can become a viable new generation of drug delivery approaches in clinical translation.
Collapse
Affiliation(s)
- Linxiang Yin
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Verma A, Åberg-Zingmark E, Sparrman T, Mushtaq AU, Rogne P, Grundström C, Berntsson R, Sauer UH, Backman L, Nam K, Sauer-Eriksson E, Wolf-Watz M. Insights into the evolution of enzymatic specificity and catalysis: From Asgard archaea to human adenylate kinases. SCIENCE ADVANCES 2022; 8:eabm4089. [PMID: 36332013 PMCID: PMC9635829 DOI: 10.1126/sciadv.abm4089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic catalysis is critically dependent on selectivity, active site architecture, and dynamics. To contribute insights into the interplay of these properties, we established an approach with NMR, crystallography, and MD simulations focused on the ubiquitous phosphotransferase adenylate kinase (AK) isolated from Odinarchaeota (OdinAK). Odinarchaeota belongs to the Asgard archaeal phylum that is believed to be the closest known ancestor to eukaryotes. We show that OdinAK is a hyperthermophilic trimer that, contrary to other AK family members, can use all NTPs for its phosphorylation reaction. Crystallographic structures of OdinAK-NTP complexes revealed a universal NTP-binding motif, while 19F NMR experiments uncovered a conserved and rate-limiting dynamic signature. As a consequence of trimerization, the active site of OdinAK was found to be lacking a critical catalytic residue and is therefore considered to be "atypical." On the basis of discovered relationships with human monomeric homologs, our findings are discussed in terms of evolution of enzymatic substrate specificity and cold adaptation.
Collapse
Affiliation(s)
- Apoorv Verma
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Tobias Sparrman
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Ronnie Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Uwe H. Sauer
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Lars Backman
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | |
Collapse
|
4
|
Liu W, Nestorovich EM. Anthrax toxin channel: What we know based on over 30 years of research. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183715. [PMID: 34332985 DOI: 10.1016/j.bbamem.2021.183715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Protective antigen channel is the central component of the deadly anthrax exotoxin responsible for binding and delivery of the toxin's enzymatic lethal and edema factor components into the cytosol. The channel, which is more than three times longer than the lipid bilayer membrane thickness and has a 6-Å limiting diameter, is believed to provide a sophisticated unfoldase and translocase machinery for the foreign protein transport into the host cell cytosol. The tripartite toxin can be reengineered, one component at a time or collectively, to adapt it for the targeted cancer therapeutic treatments. In this review, we focus on the biophysical studies of the protective antigen channel-forming activity, small ion transport properties, enzymatic factor translocation, and blockage comparing it with the related clostridial binary toxin channels. We address issues linked to the anthrax toxin channel structural dynamics and lipid dependence, which are yet to become generally recognized as parts of the toxin translocation machinery.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA.
| |
Collapse
|
5
|
Machen AJ, Fisher MT, Freudenthal BD. Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism. Sci Rep 2021; 11:13038. [PMID: 34158520 PMCID: PMC8219829 DOI: 10.1038/s41598-021-91596-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Translocation is essential to the anthrax toxin mechanism. Protective antigen (PA), the binding component of this AB toxin, forms an oligomeric pore that translocates lethal factor (LF) or edema factor, the active components of the toxin, into the cell. Structural details of the translocation process have remained elusive despite their biological importance. To overcome the technical challenges of studying translocation intermediates, we developed a method to immobilize, transition, and stabilize anthrax toxin to mimic important physiological steps in the intoxication process. Here, we report a cryoEM snapshot of PApore translocating the N-terminal domain of LF (LFN). The resulting 3.3 Å structure of the complex shows density of partially unfolded LFN near the canonical PApore binding site. Interestingly, we also observe density consistent with an α helix emerging from the 100 Å β barrel channel suggesting LF secondary structural elements begin to refold in the pore channel. We conclude the anthrax toxin β barrel aids in efficient folding of its enzymatic payload prior to channel exit. Our hypothesized refolding mechanism has broader implications for pore length of other protein translocating toxins.
Collapse
Affiliation(s)
- Alexandra J Machen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
6
|
Yamini G, Kanchi S, Kalu N, Momben Abolfath S, Leppla SH, Ayappa KG, Maiti PK, Nestorovich EM. Hydrophobic Gating and 1/ f Noise of the Anthrax Toxin Channel. J Phys Chem B 2021; 125:5466-5478. [PMID: 34015215 DOI: 10.1021/acs.jpcb.0c10490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
"Pink" or 1/f noise is a natural phenomenon omnipresent in physics, economics, astrophysics, biology, and even music and languages. In electrophysiology, the stochastic activity of a number of biological ion channels and artificial nanopores could be characterized by current noise with a 1/f power spectral density. In the anthrax toxin channel (PA63), it appears as fast voltage-independent current interruptions between conducting and nonconducting states. This behavior hampers potential development of PA63 as an ion-channel biosensor. On the bright side, the PA63 flickering represents a mesmerizing phenomenon to investigate. Notably, similar 1/f fluctuations are observed in the channel-forming components of clostridial binary C2 and iota toxins, which share functional and structural similarities with the anthrax toxin channel. Similar to PA63, they are evolved to translocate the enzymatic components of the toxins into the cytosol. Here, using high-resolution single-channel lipid bilayer experiments and all-atom molecular dynamic simulations, we suggest that the 1/f noise in PA63 occurs as a result of "hydrophobic gating" at the ϕ-clamp region, the phenomenon earlier observed in several water-filled channels "fastened" inside by the hydrophobic belts. The ϕ-clamp is a narrow "hydrophobic ring" in the PA63 lumen formed by seven or eight phenylalanine residues at position 427, conserved in the C2 and iota toxin channels, which catalyzes protein translocation. Notably, the 1/f noise remains undetected in the F427A PA63 mutant. This finding can elucidate the functional purpose of 1/f noise and its possible role in the transport of the enzymatic components of binary toxins.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Subbarao Kanchi
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India.,Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Nnanya Kalu
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Sanaz Momben Abolfath
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| |
Collapse
|