1
|
Samarakoon Y, Yelland T, Garcia-Gonzalez E, da Silva Justo Junior A, Mahmood M, Manoharan A, Patterson S, Serafin V, Gammage PA, Marmiroli S, Halsey C, Ismail S, Roberts EW. UNC119 regulates T-cell receptor signalling in primary T cells and T acute lymphocytic leukaemia. Life Sci Alliance 2025; 8:e202403066. [PMID: 39814552 PMCID: PMC11735834 DOI: 10.26508/lsa.202403066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025] Open
Abstract
T-cell receptor recognition of cognate peptide-MHC leads to the formation of signalling domains and the immunological synapse. Because of the close membrane apposition, there is rapid exclusion of CD45, and therefore LCK activation. Much less is known about whether spatial regulation of the intracellular face dictates LCK activity and TCR signal transduction. Moreover, as LCK is a driver in T acute lymphocytic leukaemia, it is important to understand its regulation. Here, we demonstrate a direct role of the ciliary protein UNC119 in trafficking LCK to the immunological synapse. Inhibiting UNC119 reduces localisation of LCK without impairing LCK phosphorylation and reduces T-cell receptor signal transduction. Although important for initial LCK reorganisation, activated CD8+ T cells retained their ability to kill target tumour cells when UNC119 was inhibited. UNC119 was also needed to sustain proliferation in patient-derived T-ALL cells. UNC119 may therefore represent a novel therapeutic target in T acute lymphocytic leukaemia, which alters the subcellular localisation of LCK in T acute lymphocytic leukaemia cells but preserves the function of existing cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Youhani Samarakoon
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| | | | - Esther Garcia-Gonzalez
- Central Laser Facility, Science & Technology Facility Council, The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire, UK
| | | | - Mahnoor Mahmood
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Anand Manoharan
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Shaun Patterson
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Valentina Serafin
- Department of Biomedical, Metabolic and Neural Sciences, Cellular Signalling Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Payam A Gammage
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, Cellular Signalling Unit, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Shehab Ismail
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Edward W Roberts
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| |
Collapse
|
2
|
Horne CR, Dite TA, Young SN, Mather LJ, Dagley LF, Johnson JL, Yaron-Barir TM, Huntsman EM, Daly LA, Byrne DP, Cadell AL, Ng BH, Yousef J, Multari DH, Shen L, McAloon LM, Manning G, Febbraio MA, Means AR, Cantley LC, Tanzer MC, Croucher DR, Eyers CE, Eyers PA, Scott JW, Murphy JM. PSKH1 kinase activity is differentially modulated via allosteric binding of Ca 2+ sensor proteins. Proc Natl Acad Sci U S A 2025; 122:e2420961122. [PMID: 39964718 PMCID: PMC11873932 DOI: 10.1073/pnas.2420961122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Protein Serine Kinase H1 (PSKH1) was recently identified as a crucial factor in kidney development and is overexpressed in prostate, lung, and kidney cancers. However, little is known about PSKH1 regulatory mechanisms, leading to its classification as a "dark" kinase. Here, we used biochemistry and mass spectrometry to define PSKH1's consensus substrate motif, protein interactors, and how interactors, including Ca2+ sensor proteins, promote or suppress activity. Intriguingly, despite the absence of a canonical Calmodulin binding motif, Ca2+-Calmodulin activated PSKH1 while, in contrast, the ER-resident Ca2+ sensor of the Cab45, Reticulocalbin, Erc55, Calumenin (CREC) family, Reticulocalbin-3, suppressed PSKH1 catalytic activity. In addition to antagonistic regulation of the PSKH1 kinase domain by Ca2+ sensing proteins, we identified UNC119B as a protein interactor that activates PSKH1 via direct engagement of the kinase domain. Our findings identify complementary allosteric mechanisms by which regulatory proteins tune PSKH1's catalytic activity and raise the possibility that different Ca2+ sensors may act more broadly to tune kinase activities by detecting and decoding extremes of intracellular Ca2+ concentrations.
Collapse
Affiliation(s)
- Christopher R. Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Toby A. Dite
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC3052, Australia
| | - Samuel N. Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
| | - Lucy J. Mather
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
| | - Laura F. Dagley
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC3052, Australia
| | - Jared L. Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Tomer M. Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10021
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Emily M. Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10021
| | - Leonard A. Daly
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Dominic P. Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Antonia L. Cadell
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW2010, Australia
| | - Boaz H. Ng
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW2010, Australia
| | - Jumana Yousef
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC3052, Australia
| | - Dylan H. Multari
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC3052, Australia
| | - Lianju Shen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
| | - Luke M. McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC3065, Australia
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC3065, Australia
| | | | - Mark A. Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Anthony R. Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Maria C. Tanzer
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC3052, Australia
| | - David R. Croucher
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2010, Australia
| | - Claire E. Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Patrick A. Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - John W. Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC3065, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC3052, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| |
Collapse
|
3
|
Kaya P, Schaffner-Reckinger E, Manoharan GB, Vukic V, Kiriazis A, Ledda M, Burgos Renedo M, Pavic K, Gaigneaux A, Glaab E, Abankwa DK. An Improved PDE6D Inhibitor Combines with Sildenafil To Inhibit KRAS Mutant Cancer Cell Growth. J Med Chem 2024; 67:8569-8584. [PMID: 38758695 PMCID: PMC11181323 DOI: 10.1021/acs.jmedchem.3c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
The trafficking chaperone PDE6D (or PDEδ) was proposed as a surrogate target for K-Ras, leading to the development of a series of inhibitors that block its prenyl binding pocket. These inhibitors suffered from low solubility and suspected off-target effects, preventing their clinical development. Here, we developed a highly soluble, low nanomolar PDE6D inhibitor (PDE6Di), Deltaflexin3, which has the lowest off-target activity as compared to three prominent reference compounds. Deltaflexin3 reduces Ras signaling and selectively decreases the growth of KRAS mutant and PDE6D-dependent cancer cells. We further show that PKG2-mediated phosphorylation of Ser181 lowers K-Ras binding to PDE6D. Thus, Deltaflexin3 combines with the approved PKG2 activator Sildenafil to more potently inhibit PDE6D/K-Ras binding, cancer cell proliferation, and microtumor growth. As observed previously, inhibition of Ras trafficking, signaling, and cancer cell proliferation remained overall modest. Our results suggest reevaluating PDE6D as a K-Ras surrogate target in cancer.
Collapse
Affiliation(s)
- Pelin Kaya
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Elisabeth Schaffner-Reckinger
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Ganesh babu Manoharan
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Vladimir Vukic
- Faculty
of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Alexandros Kiriazis
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, 20520 Turku, Finland
| | - Mirko Ledda
- Luxembourg
Center for Systems Biomedicine, University
of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Maria Burgos Renedo
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Karolina Pavic
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Anthoula Gaigneaux
- Bioinformatics
Core, Department of Life Sciences and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Luxembourg
Center for Systems Biomedicine, University
of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Daniel Kwaku Abankwa
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
4
|
Moran AL, Louzao-Martinez L, Norris DP, Peters DJM, Blacque OE. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 2024; 20:83-100. [PMID: 37872350 DOI: 10.1038/s41581-023-00773-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Collapse
Affiliation(s)
- Ailis L Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Laura Louzao-Martinez
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Salcedo MV, Gravel N, Keshavarzi A, Huang LC, Kochut KJ, Kannan N. Predicting protein and pathway associations for understudied dark kinases using pattern-constrained knowledge graph embedding. PeerJ 2023; 11:e15815. [PMID: 37868056 PMCID: PMC10590106 DOI: 10.7717/peerj.15815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/10/2023] [Indexed: 10/24/2023] Open
Abstract
The 534 protein kinases encoded in the human genome constitute a large druggable class of proteins that include both well-studied and understudied "dark" members. Accurate prediction of dark kinase functions is a major bioinformatics challenge. Here, we employ a graph mining approach that uses the evolutionary and functional context encoded in knowledge graphs (KGs) to predict protein and pathway associations for understudied kinases. We propose a new scalable graph embedding approach, RegPattern2Vec, which employs regular pattern constrained random walks to sample diverse aspects of node context within a KG flexibly. RegPattern2Vec learns functional representations of kinases, interacting partners, post-translational modifications, pathways, cellular localization, and chemical interactions from a kinase-centric KG that integrates and conceptualizes data from curated heterogeneous data resources. By contextualizing information relevant to prediction, RegPattern2Vec improves accuracy and efficiency in comparison to other random walk-based graph embedding approaches. We show that the predictions produced by our model overlap with pathway enrichment data produced using experimentally validated Protein-Protein Interaction (PPI) data from both publicly available databases and experimental datasets not used in training. Our model also has the advantage of using the collected random walks as biological context to interpret the predicted protein-pathway associations. We provide high-confidence pathway predictions for 34 dark kinases and present three case studies in which analysis of meta-paths associated with the prediction enables biological interpretation. Overall, RegPattern2Vec efficiently samples multiple node types for link prediction on biological knowledge graphs and the predicted associations between understudied kinases, pseudokinases, and known pathways serve as a conceptual starting point for hypothesis generation and testing.
Collapse
Affiliation(s)
- Mariah V. Salcedo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Abbas Keshavarzi
- School of Computing, University of Georgia, Athens, GA, United States of America
| | - Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Krzysztof J. Kochut
- School of Computing, University of Georgia, Athens, GA, United States of America
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
6
|
Grochowska KM, Bär J, Gomes GM, Kreutz MR, Karpova A. Jacob, a Synapto-Nuclear Protein Messenger Linking N-methyl-D-aspartate Receptor Activation to Nuclear Gene Expression. Front Synaptic Neurosci 2021; 13:787494. [PMID: 34899262 PMCID: PMC8662305 DOI: 10.3389/fnsyn.2021.787494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons exhibit a complex dendritic tree that is decorated by a huge number of spine synapses receiving excitatory input. Synaptic signals not only act locally but are also conveyed to the nucleus of the postsynaptic neuron to regulate gene expression. This raises the question of how the spatio-temporal integration of synaptic inputs is accomplished at the genomic level and which molecular mechanisms are involved. Protein transport from synapse to nucleus has been shown in several studies and has the potential to encode synaptic signals at the site of origin and decode them in the nucleus. In this review, we summarize the knowledge about the properties of the synapto-nuclear messenger protein Jacob with special emphasis on a putative role in hippocampal neuronal plasticity. We will elaborate on the interactome of Jacob, the signals that control synapto-nuclear trafficking, the mechanisms of transport, and the potential nuclear function. In addition, we will address the organization of the Jacob/NSMF gene, its origin and we will summarize the evidence for the existence of splice isoforms and their expression pattern.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Julia Bär
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Research Group (RG) Neuronal Protein Transport, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.,Research Group (RG) Optobiology, Institute of Biology, HU Berlin, Berlin, Germany
| | - Guilherme M Gomes
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Michael R Kreutz
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,German Research Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anna Karpova
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|