1
|
Jin Y, Sun Y, Yu Y, Zhao J, Zheng M, Wang L, Jin Y. Organocatalytic Enantioselective Friedel-Crafts Reaction of Phenanthrenequinones and Indoles. Molecules 2025; 30:172. [PMID: 39795227 PMCID: PMC11721978 DOI: 10.3390/molecules30010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
An efficient stereoselective synthesis of 10-hydroxy-10-(1H-indol-3-yl)-9-(10H)-phenanthrene derivatives was realized through an organocatalyzed Friedel-Crafts reaction of phenanthrenequinones and indoles using a (S,S)-dimethylaminocyclohexyl-squaramide as the catalyst. Under the optimized conditions, the desired chiral products were obtained in good yields (73-90%) with moderate to high ee values (up to 97% ee). Two pairs of synthesized enantiomers were subjected to evaluation of their antiproliferative activities on four types of human cancer cell lines and one human umbilical vein endothelial cell line using the CCK-8 assay. The results indicated that stereoselectivity had obvious impacts on biological activity. (S)-4g was found to have optimal cytotoxicity against the A549 cell line and a good safety profile for human normal cells, which was better than the inhibitory activity of the positive control drug (doxorubicin).
Collapse
Affiliation(s)
- Yan Jin
- Department of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.J.); (Y.S.); (J.Z.)
- College of Science, Yanbian University, Yanji 133000, China
| | - Yuhong Sun
- Department of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.J.); (Y.S.); (J.Z.)
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China; (Y.Y.); (M.Z.)
| | - Yue Yu
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China; (Y.Y.); (M.Z.)
| | - Jiao Zhao
- Department of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.J.); (Y.S.); (J.Z.)
| | - Mingshan Zheng
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China; (Y.Y.); (M.Z.)
| | - Liming Wang
- Department of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.J.); (Y.S.); (J.Z.)
| | - Ying Jin
- Department of Pharmacy, Jilin Medical University, Jilin 132013, China; (Y.J.); (Y.S.); (J.Z.)
- College of Science, Yanbian University, Yanji 133000, China
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China; (Y.Y.); (M.Z.)
| |
Collapse
|
2
|
Queffélec C, Pati PB, Pellegrin Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem Rev 2024; 124:6700-6902. [PMID: 38747613 DOI: 10.1021/acs.chemrev.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage's Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.
Collapse
Affiliation(s)
| | | | - Yann Pellegrin
- Nantes Université, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
3
|
Ye T, Lin A, Qiu Z, Hu S, Zhou C, Liu Z, Cheng Q, Zhang J, Luo P. Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity. iScience 2023; 26:107045. [PMID: 37448561 PMCID: PMC10336167 DOI: 10.1016/j.isci.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is an urgent need for markers to predict the efficacy of different chemotherapy drugs. Herein, we examined whether microsatellite instability (MSI) status can predict tumor multidrug sensitivity and explored the underlying mechanisms. We downloaded data from several public databases. Drug sensitivity was compared between the high microsatellite instability (MSI-H) and microsatellite-stable/low microsatellite instability (MSS/MSI-L) groups. In addition, we performed pathway enrichment analysis and cellular chemosensitivity assays to explore the mechanisms by which MSI status may affect drug sensitivity and assessed the differences between drug-treated and control cell lines. We found that multiple MSI-H tumors were more sensitive to a variety of chemotherapy drugs than MSS/MSI-L tumors, and especially for CRC, chemosensitivity is enhanced through the downregulation of DDR pathways such as NHEJ. Additional DNA damage caused by chemotherapeutic drugs results in further downregulation of DDR pathways and enhances drug sensitivity, forming a cycle of increasing drug sensitivity.
Collapse
Affiliation(s)
- Taojun Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shulu Hu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Satange R, Rode AB, Hou MH. Revisiting recent unusual drug-DNA complex structures: Implications for cancer and neurological disease diagnostics and therapeutics. Bioorg Med Chem 2022; 76:117094. [PMID: 36410206 DOI: 10.1016/j.bmc.2022.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
DNA plays a crucial role in various biological processes such as protein production, replication, recombination etc. by adopting different conformations. Targeting these conformations by small molecules is not only important for disease therapy, but also improves our understanding of the mechanisms of disease development. In this review, we provide an overview of some of the most recent ligand-DNA complexes that have diagnostic and therapeutic applications in neurological diseases caused by abnormal repeat expansions and in cancer associated with mismatches. In addition, we have discussed important implications of ligands targeting higher-order structures, such as four-way junctions, G-quadruplexes and triplexes for drug discovery and DNA nanotechnology. We provide an overview of the results and perspectives of such structural studies on ligand-DNA interactions.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
5
|
Mirzaei-Kalar Z, Kiani Nejad Z, Khandar AA. New ZnFe2O4@SiO2@graphene quantum dots as an effective nanocarrier for targeted DOX delivery and CT-DNA binder. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
van de Griend C, van de Vijver JJ, Siegler MA, Dame RT, Bonnet S. Ruthenium-Locked Helical Chirality: A Barrier of Inversion and Formation of an Asymmetric Macrocycle. Inorg Chem 2022; 61:16045-16054. [PMID: 36171738 PMCID: PMC9554910 DOI: 10.1021/acs.inorgchem.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Upon coordination to metal centers, tetradentate ligands
based
on the 6,6′-bis(2″-aminopyridyl)-2,2′-bipyridine
(bapbpy) structure form helical chiral complexes due to the steric
clash between the terminal pyridines of the ligand. For octahedral
ruthenium(II) complexes, the two additional axial ligands bound to
the metal center, when different, generate diastereotopic aromatic
protons that can be distinguished by NMR. Based on these geometrical
features, the inversion barrier of helical [RuII(L)(RR′SO)Cl]+ complexes, where L is a sterically hindered bapbpy derivative
and RR′SO is a chiral or achiral sulfoxide ligand, was studied
by variable-temperature 1H NMR. The coalescence energies
for the inversion of the helical chirality of [Ru(bapbpy)(DMSO)(Cl)]Cl
and [Ru(bapbpy)(MTSO)(Cl)]Cl (where MTSO is (R)-methyl p-tolylsulfoxide) were found to be 43 and 44 kJ/mol, respectively.
By contrast, in [Ru(biqbpy)(DMSO)(Cl)]Cl (biqbpy = 6,6′-bis(aminoquinolyl)-2,2′-bipyridine),
increased strain caused by the larger terminal quinoline groups resulted
in a coalescence temperature higher than 376 K, which pointed to an
absence of helical chirality inversion at room temperature. Further
increasing the steric strain by introducing methoxy groups ortho to
the nitrogen atoms of the terminal pyridyl groups in bapbpy resulted
in the serendipitous discovery of a ring-closing reaction that took
place upon trying to make [Ru(OMe-bapbpy)(DMSO)Cl]+ (OMe-bapbpy
= 6,6′-bis(6-methoxy-aminopyridyl)-2,2′-bipyridine).
This reaction generated, in excellent yields, a chiral complex [Ru(L″)(DMSO)Cl]Cl,
where L″ is an asymmetric tetrapyridyl macrocycle. This unexpected
transformation appears to be specific to ruthenium(II) as macrocyclization
did not occur upon coordination of the same ligand to palladium(II)
or rhodium(III). Ruthenium
complexes based on the bapbpy ligand form helical
chiral complexes due to the steric clash between their terminal pyridyl
groups. The coalescence energy for the inversion of this helical chirality
was 43 kJ/mol according to variable temperature NMR. Increasing the
steric strain by replacing terminal pyridyl groups with quinolyl groups
blocked helical interconversion, while introducing ortho-methoxy groups resulted in an unexpected ring-closing reaction,
forming a dissymmetric macrocycle bound to ruthenium in excellent
yields.
Collapse
Affiliation(s)
- Corjan van de Griend
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
| | - Johannes J van de Vijver
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
| | - Maxime A Siegler
- Small molecule X-ray facility, Department of Chemistry, John Hopkins University, Baltimore, Maryland 21218, United States
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
| |
Collapse
|
7
|
Wang ZF, Nai XL, Xu Y, Pan FH, Tang FS, Qin QP, Yang L, Zhang SH. Cell nucleus localization and high anticancer activity of quinoline-benzopyran rhodium(III) metal complexes as therapeutic and fluorescence imaging agents. Dalton Trans 2022; 51:12866-12875. [PMID: 35861361 DOI: 10.1039/d2dt01929a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel rhodium(III) complexes, [RhIII(QB1)Cl3(DMSO)] (RhN1), [RhIII(QB2)Cl3(CH3OH)]·CH3OH (RhN2), [RhIII(QB3)Cl3(CH3OH)]·CH3OH (RhS), and [RhIII(QB4)Cl3(DMSO)] (RhQ), bearing quinoline-benzopyran ligands (QB1-QB4) were synthesized and used to develop highly anticancer therapeutic and fluorescence imaging agents. Compared with the QB1-QB4 ligands (IC50 > 89.2 ± 1.7 μM for A549/DDP), RhN1, RhN2, RhS and RhQ exhibit selective cytotoxicity against lung carcinoma cisplatin-resistant A549/DDP (A549CDDP) cancer cells, with IC50 values in the range of 0.08-2.7 μM. The fluorescent imaging agent RhQ with the more extended planar QB4 ligand exhibited high anticancer activity in A549CDDP cells and was found in the cell nucleus fraction, whereas RhS had no fluorescence properties. RhQ and RhS may trigger cell apoptosis by causing DNA damage and initiating the mitochondrial dysfunction pathway. Furthermore, RhQ has a higher antitumor efficacy (ca. 55.3%) than RhS (46.4%) and cisplatin (CDDP, 33.1%), and RhQ demonstrated significantly lower toxicity in vivo than CDDP, making it a promising Rh(III)-based anticancer therapeutic and fluorescence imaging agent.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China
| | - Xiao-Ling Nai
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yue Xu
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Feng-Hua Pan
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Fu-Shun Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China.
| | - Qi-Pin Qin
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Lin Yang
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China
| |
Collapse
|
8
|
Huang J, Chen Y, Guo Y, Bao M, Hong K, Zhang Y, Hu W, Lei J, Liu Y, Xu X. Synthesis of dihydrofuran-3-one and 9,10-phenanthrenequinone hybrid molecules and biological evaluation against colon cancer cells as selective Akt kinase inhibitors. Mol Divers 2022; 27:845-855. [PMID: 35751771 DOI: 10.1007/s11030-022-10458-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
A series of dihydrofuran-3-one and 9,10-phenanthrenequinone hybrid compounds were synthetized through a one-pot gold-catalyzed oxidative cyclization and Aldol-type addition cascade reaction of homopropargylic alcohols with 9,10-phenanthrenequinone. The cytotoxicity of newly synthesized compounds was evaluated in CCK8 assay against different human cancer cells, showing significantly antiproliferative activity against tested tumor cell lines with a lowest IC50 value of 0.92 μM over HCT-116. Further investigation revealed that the treatment of HCT-116 cell line with the promising compound 4c induced cell death as a selective Akt inhibitor. In addition, controlled experiments and molecular docking study suggested that the significant antitumor activity might be attributed to the unique hybrid structure, which implied the promising potential of this dual heterocycle hybrid method in the discovery of novel bioactive molecules with structural diversity.
Collapse
Affiliation(s)
- Jingjing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yufei Chen
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yinfeng Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Bao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jinping Lei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yongqiang Liu
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Masuri S, Vaňhara P, Cabiddu MG, Moráň L, Havel J, Cadoni E, Pivetta T. Copper(II) Phenanthroline-Based Complexes as Potential AntiCancer Drugs: A Walkthrough on the Mechanisms of Action. Molecules 2021; 27:49. [PMID: 35011273 PMCID: PMC8746828 DOI: 10.3390/molecules27010049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been found at high levels in serum and tissues of several types of human cancers. Under these circumstances, two strategies are commonly followed in the development of novel anticancer Copper-based drugs: the sequestration of free Copper ions and the synthesis of Copper complexes that trigger cell death. The latter strategy has been followed in the last 40 years and many reviews have covered the anticancer properties of a broad spectrum of Copper complexes, showing that the activity of these compounds is often multi factored. In this work, we would like to focus on the anticancer properties of mixed Cu(II) complexes bearing substituted or unsubstituted 1,10-phenanthroline based ligands and different classes of inorganic and organic auxiliary ligands. For each metal complex, information regarding the tested cell lines and the mechanistic studies will be reported and discussed. The exerted action mechanisms were presented according to the auxiliary ligand/s, the metallic centers, and the increasing complexity of the compound structures.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Enzo Cadoni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| |
Collapse
|