1
|
Cao L, Zhang J, Chen J, Li M, Chen H, Wang C, Gong C. Tryptophan production by catalysis of a putative tryptophan synthase protein. Arch Microbiol 2024; 206:390. [PMID: 39222088 DOI: 10.1007/s00203-024-04123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Essential amino acid, tryptophan which intake from food plays a critical role in numerous metabolic functions, exhibiting extensive biological functions and applications. Tryptophan is beneficial for the food sector by enhancing nutritional content and promoting the development of functional foods. A putative gene encoding tryptophan synthase was the first identified in Sphingobacterium soilsilvae Em02, a cellulosic bacterium making it inherently more environmentally friendly. The gene was cloned and expressed in exogenous host Escherichia coli, to elucidate its function. The recombinant tryptophan synthase with a molecular weight 42 KDa was expressed in soluble component. The enzymatic activity to tryptophan synthase in vivo was assessed using indole and L-serine and purified tryptophan synthase. The optimum enzymatic activity for tryptophan synthase was recorded at 50 ºC and pH 7.0, which was improved in the presence of metal ions Mg2+, Sr2+ and Mn2+, whereas Cu2+, Zn2+ and Co2+ proved to be inhibitory. Using site-directed mutagenesis, the consensus pattern HK-S-[GGGSN]-E-S in the tryptophan synthase was demonstrated with K100Q, S202A, G246A, E361A and S385A as the active sites. Tryptophan synthase has been demonstrated to possess the defining characteristics of the β-subunits. The tryptophan synthase may eventually be useful for tryptophan production on a larger scale. Its diverse applications highlight the potential for improving both the quality and health benefits of food products, making it an essential component in advancing food science and technology.
Collapse
Affiliation(s)
- Lulu Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Jiaqi Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jia Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Mei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Hao Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Chongju Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China.
| |
Collapse
|
2
|
Roy A, Karttunen M. A Molecular Dynamics Simulation Study of the Effects of βGln114 Mutation on the Dynamic Behavior of the Catalytic Site of the Tryptophan Synthase. J Chem Inf Model 2024; 64:983-1003. [PMID: 38291608 DOI: 10.1021/acs.jcim.3c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
L-tryptophan (l-Trp), a vital amino acid for the survival of various organisms, is synthesized by the enzyme tryptophan synthase (TS) in organisms such as eubacteria, archaebacteria, protista, fungi, and plantae. TS, a pyridoxal 5'-phosphate (PLP)-dependent enzyme, comprises α and β subunits that typically form an α2β2 tetramer. The enzyme's activity is regulated by the conformational switching of its α and β subunits between the open (T state) and closed (R state) conformations. Many microorganisms rely on TS for growth and replication, making the enzyme and the l-Trp biosynthetic pathway potential drug targets. For instance, Mycobacterium tuberculosis, Chlamydiae bacteria, Streptococcus pneumoniae, Francisella tularensis, Salmonella bacteria, and Cryptosporidium parasitic protozoa depend on l-Trp synthesis. Antibiotic-resistant salmonella strains have emerged, underscoring the need for novel drugs targeting the l-Trp biosynthetic pathway, especially for salmonella-related infections. A single amino acid mutation can significantly impact enzyme function, affecting stability, conformational dynamics, and active or allosteric sites. These changes influence interactions, catalytic activity, and protein-ligand/protein-protein interactions. This study focuses on the impact of mutating the βGln114 residue on the catalytic and allosteric sites of TS. Extensive molecular dynamics simulations were conducted on E(PLP), E(AEX1), E(A-A), and E(C3) forms of TS using the WT, βQ114A, and βQ114N versions. The results show that both the βQ114A and βQ114N mutations increase protein backbone root mean square deviation fluctuations, destabilizing all TS forms. Conformational and hydrogen bond analyses suggest the significance of βGln114 drifting away from cofactor/intermediates and forming hydrogen bonds with water molecules necessary for l-Trp biosynthesis. The βQ114A mutation creates a gap between βAla114 and cofactor/intermediates, hindering hydrogen bond formation due to short side chains and disrupting β-sites. Conversely, the βQ114N mutation positions βAsn114 closer to cofactor/intermediates, forming hydrogen bonds with O3 of cofactors/intermediates and nearby water molecules, potentially disrupting the l-Trp biosynthetic mechanism.
Collapse
Affiliation(s)
- Anupom Roy
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A3K7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
| |
Collapse
|
3
|
D'Amico RN, Boehr DD. Allostery, engineering and inhibition of tryptophan synthase. Curr Opin Struct Biol 2023; 82:102657. [PMID: 37467527 DOI: 10.1016/j.sbi.2023.102657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
The final two steps of tryptophan biosynthesis are catalyzed by the enzyme tryptophan synthase (TS), composed of alpha (αTS) and beta (βTS) subunits. Recently, experimental and computational methods have mapped "allosteric networks" that connect the αTS and βTS active sites. In αTS, allosteric networks change across the catalytic cycle, which might help drive the conformational changes associated with its function. Directed evolution studies to increase catalytic function and expand the substrate profile of stand-alone βTS have also revealed the importance of αTS in modulating the conformational changes in βTS. These studies also serve as a foundation for the development of TS inhibitors, which can find utility against Mycobacterium tuberculosis and other bacterial pathogens.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802
| | - David D Boehr
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802.
| |
Collapse
|
4
|
Nicoleti JL, Braga ES, Stanisic D, Jadranin M, Façanha DAE, Barral TD, Hanna SA, Azevedo V, Meyer R, Tasic L, Portela RW. A serum NMR metabolomic analysis of the Corynebacterium pseudotuberculosis infection in goats. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12595-0. [PMID: 37219572 DOI: 10.1007/s00253-023-12595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Caseous lymphadenitis (CLA), an infectious disease caused by Corynebacterium pseudotuberculosis in small ruminants, is highly prevalent worldwide. Economic losses have already been associated with the disease, and little is known about the host-pathogen relationship associated with the disease. The present study aimed to perform a metabolomic study of the C. pseudotuberculosis infection in goats. Serum samples were collected from a herd of 173 goats. The animals were classified as controls (not infected), asymptomatic (seropositives but without detectable CLA clinical signs), and symptomatic (seropositive animals presenting CLA lesions), according to microbiological isolation and immunodiagnosis. The serum samples were analyzed using nuclear magnetic resonance (1H-NMR), nuclear Overhauser effect spectroscopy (NOESY), and Carr-Purcell-Meiboom-Gill (CPMG) sequences. The NMR data were analyzed using chemometrics, and principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were performed to discover specific biomarkers responsible for discrimination between the groups. A high dissemination of the infection by C. pseudotuberculosis was observed, being 74.57% asymptomatic and 11.56% symptomatic. In the evaluation of 62 serum samples by NMR, the techniques were satisfactory in the discrimination of the groups, being also complementary and mutually confirming, demonstrating possible biomarkers for the infection by the bacterium. Twenty metabolites of interest were identified by NOESY and 29 by CPMG, such as tryptophan, polyunsaturated fatty acids, formic acid, NAD+, and 3-hydroxybutyrate, opening promising possibilities for the use of these results in new therapeutic, immunodiagnosis, and immunoprophylactic tools, as well as for studies of the immune response against C. pseudotuberculosis. KEY POINTS: • Sixty-two samples from healthy, CLA asymptomatic, and symptomatic goats were screened • Twenty metabolites of interest were identified by NOESY and 29 by CPMG • 1H-NMR NOESY and CPMG were complementary and mutually confirming.
Collapse
Affiliation(s)
- Jorge Luis Nicoleti
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Erik Sobrinho Braga
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
| | - Danijela Stanisic
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
| | - Milka Jadranin
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Serbia
| | - Débora Andréa Evangelista Façanha
- Institute of Rural Development, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Ceará State, 62790-000, Brazil
| | - Thiago Doria Barral
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Samira Abdallah Hanna
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Roberto Meyer
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Ljubica Tasic
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
| | - Ricardo Wagner Portela
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil.
| |
Collapse
|
5
|
Ito S, Yagi K, Sugita Y. Allosteric regulation of β-reaction stage I in tryptophan synthase upon the α-ligand binding. J Chem Phys 2023; 158:115101. [PMID: 36948822 DOI: 10.1063/5.0134117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Tryptophan synthase (TRPS) is a bifunctional enzyme consisting of α- and β-subunits that catalyzes the last two steps of L-tryptophan (L-Trp) biosynthesis. The first stage of the reaction at the β-subunit is called β-reaction stage I, which converts the β-ligand from an internal aldimine [E(Ain)] to an α-aminoacrylate [E(A-A)] intermediate. The activity is known to increase 3-10-fold upon the binding of 3-indole-D-glycerol-3'-phosphate (IGP) at the α-subunit. The effect of α-ligand binding on β-reaction stage I at the distal β-active site is not well understood despite the abundant structural information available for TRPS. Here, we investigate the β-reaction stage I by carrying out minimum-energy pathway searches based on a hybrid quantum mechanics/molecular mechanics (QM/MM) model. The free-energy differences along the pathway are also examined using QM/MM umbrella sampling simulations with QM calculations at the B3LYP-D3/aug-cc-pVDZ level of theory. Our simulations suggest that the sidechain orientation of βD305 near the β-ligand likely plays an essential role in the allosteric regulation: a hydrogen bond is formed between βD305 and the β-ligand in the absence of the α-ligand, prohibiting a smooth rotation of the hydroxyl group in the quinonoid intermediate, whereas the dihedral angle rotates smoothly after the hydrogen bond is switched from βD305-β-ligand to βD305-βR141. This switch could occur upon the IGP-binding at the α-subunit, as evidenced by the existing TRPS crystal structures.
Collapse
Affiliation(s)
- Shingo Ito
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyoshi Yagi
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Ghosh RK, Hilario E, Chang CEA, Mueller LJ, Dunn MF. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Front Mol Biosci 2022; 9:923042. [PMID: 36172042 PMCID: PMC9512447 DOI: 10.3389/fmolb.2022.923042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αββα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3′-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring β-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αβ dimeric units of the αββα bienzyme complex, the common intermediate indole is channeled from the α site to the β site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the β-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αββα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and β-sites. This coupling drives the α- and β-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and β-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and β-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| |
Collapse
|
7
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
8
|
Ito S, Yagi K, Sugita Y. Computational Analysis on the Allostery of Tryptophan Synthase: Relationship between α/β-Ligand Binding and Distal Domain Closure. J Phys Chem B 2022; 126:3300-3308. [PMID: 35446577 PMCID: PMC9083551 DOI: 10.1021/acs.jpcb.2c01556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tryptophan synthase (TRPS) is a bifunctional enzyme consisting of α and β-subunits and catalyzes the last two steps of l-tryptophan (L-Trp) biosynthesis, namely, cleavage of 3-indole-d-glycerol-3'-phosphate (IGP) into indole and glyceraldehyde-3-phosphate (G3P) in the α-subunit, and a pyridoxal phosphate (PLP)-dependent reaction of indole and l-serine (L-Ser) to produce L-Trp in the β-subunit. Importantly, the IGP binding at the α-subunit affects the β-subunit conformation and its ligand-binding affinity, which, in turn, enhances the enzymatic reaction at the α-subunit. The intersubunit communications in TRPS have been investigated extensively for decades because of the fundamental and pharmaceutical importance, while it is still difficult to answer how TRPS allostery is regulated at the atomic detail. Here, we investigate the allosteric regulation of TRPS by all-atom classical molecular dynamics (MD) simulations and analyze the potential of mean-force (PMF) along conformational changes of the α- and β-subunits. The present simulation has revealed a widely opened conformation of the β-subunit, which provides a pathway for L-Ser to enter into the β-active site. The IGP binding closes the α-subunit and induces a wide opening of the β-subunit, thereby enhancing the binding affinity of L-Ser to the β-subunit. Structural analyses have identified critical hydrogen bonds (HBs) at the interface of the two subunits (αG181-βS178, αP57-βR175, etc.) and HBs between the β-subunit (βT110 - βH115) and a complex of PLP and L-Ser (an α-aminoacrylate intermediate). The former HBs regulate the allosteric, β-subunit opening, whereas the latter HBs are essential for closing the β-subunit in a later step. The proposed mechanism for how the interdomain communication in TRPS is realized with ligand bindings is consistent with the previous experimental data, giving a general idea to interpret the allosteric regulations in multidomain proteins.
Collapse
Affiliation(s)
- Shingo Ito
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyoshi Yagi
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|