1
|
Exertier C, Montemiglio LC, Tognaccini L, Zamparelli C, Vallone B, Olczak T, Śmiga M, Smulevich G, Malatesta F. Gaseous ligand binding to Porphyromonas gingivalis HmuY hemophore-like protein in complex with heme. J Inorg Biochem 2025; 269:112879. [PMID: 40073653 DOI: 10.1016/j.jinorgbio.2025.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Porphyromonas gingivalis is the main pathogenic player in the development of periodontitis. To acquire heme, being an essential source of iron and protoporphyrin IX, P. gingivalis utilizes TonB-dependent outer membrane heme receptor (HmuR) and heme-binding hemophore-like protein (HmuY) as the main system for heme uptake from host hemoproteins. In this work, we present an extensive spectroscopic characterization of the binding of exogenous gaseous ligands to the holo-form of the HmuY (HmuY-heme) to unravel the mechanistic basis of heme release. Our data are consistent with a scenario where heme release from HmuY-heme is a multistep process that requires the initial rupture of one of the two heme‑iron coordination bonds with endogenous histidines.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology (IBPM), CNR, c/o Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology (IBPM), CNR, c/o Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Lorenzo Tognaccini
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, FI, Italy.
| | - Carlotta Zamparelli
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Beatrice Vallone
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland.
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland.
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, FI, Italy.
| | - Francesco Malatesta
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
2
|
Wang M, Zhang D, Tian X, Tong J, Yao Y, Wang M, Zhu D, Jia R, Chen S, Zhao X, Zhang S, Huang J, Ou X, Tian B, Sun D, He Y, Wu Z, Ouyang S, Liu M, Cheng A. Structural Basis and Mechanism of a Unique Haemophore in the Haem-Iron Acquisition by Riemerella anatipestifer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412202. [PMID: 39887654 PMCID: PMC11967795 DOI: 10.1002/advs.202412202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Several bacterial pathogens employ haemophores to scavenge haem from host haemoprotein to obtain an iron source. However, no homologues of well-characterized haemophores are found in Riemerella anatipestifer, a bacterium belonging to the order Flavobacteriales that encodes haem uptake systems. Herein, a unique haemophore RhuH is characterized in this bacterium. R. anatipestifer used RhuH to grow when duck hemoglobin serves as the sole iron resource. RhuH is secreted as a component of outer membrane vesicles. Recombinant RhuH exhibited a high binding affinity for haem (Kd of 3.44 × 10-11 m) and can extract haem from duck hemoglobin. X-ray crystallography elucidated the 3D structure of RhuH at 2.85 Å resolution, showing a dimeric conformation with each monomer exhibiting a unique structure. Structure modeling of RhuH-haem, coupled with mutagenesis, haemin utilization, and binding affinity assays, show that haem is captured in the β-barrel-like region, displaying the classic iron coordination. The RhuH homologues are predominantly distributed in Weeksellaceae and Flavobacteriaceae. Finally, the homologues of RhuH in Riemerella columbina, Flavobacterium columnare, and Flavobacterium soli are used as a proof of concept, demonstrating that these homologues exhibit conserved structures and functions.
Collapse
|
3
|
Krug SA, Shahzad S, Witt WT, Barbier M, Wilks A, Kane MA. Quantitative LC-MS/MS Analysis of Endogenous Pseudomonas aeruginosa Isomeric Metabolites Biliverdin IX Alpha, Beta, and Delta in Cell Culture Supernatant, Cell Pellet, and Lung Tissue. J Proteome Res 2025; 24:649-656. [PMID: 39792953 DOI: 10.1021/acs.jproteome.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pseudomonas aeruginosa (Pa) utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to Pa, while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ. The assay was validated for accuracy, precision, linearity, extraction recovery, solution stability, freeze-thaw stability, benchtop stability, postextraction stability, and nonspecific oxidation of BVIX. The addition of an antioxidant, butylated hydroxytoluene, during sample preparation is needed in order to prevent coupled oxidation from inflating quantitative values of BVIX. The assay development included optimization of a liquid-liquid extraction for bacterial culture supernatants and sample preparation procedures for cell pellets and tissue homogenate to reduce sample demand and automate the extraction procedure in a 96-well format, to enhance extraction throughput. This method was applied to analyze isomer distribution in Pa supernatant, bacterial pellet, and infected lung tissue from Pa-challenged mice. This method can be used in the future for low-volume culture samples, as well as tissue samples, to understand the mechanisms of virulence and inform future drug development.
Collapse
Affiliation(s)
- Samuel A Krug
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Saba Shahzad
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - William T Witt
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Mariette Barbier
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Angela Wilks
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Maureen A Kane
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Han S, Guo K, Wang W, Tao YJ, Gao H. Bacterial TANGO2 homologs are heme-trafficking proteins that facilitate biosynthesis of cytochromes c. mBio 2023; 14:e0132023. [PMID: 37462360 PMCID: PMC10470608 DOI: 10.1128/mbio.01320-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Heme, an essential molecule for virtually all living organisms, acts primarily as a cofactor in a large number of proteins. However, how heme is mobilized from the site of synthesis to the locations where hemoproteins are assembled remains largely unknown in cells, especially bacterial ones. In this study, with Shewanella oneidensis as the model, we identified HtpA (SO0126) as a heme-trafficking protein and homolog of TANGO2 proteins found in eukaryotes. We showed that HtpA homologs are widely distributed in all domains of living organisms and have undergone parallel evolution. In its absence, the cytochrome (cyt) c content and catalase activity decreased significantly. We further showed that both HtpA and representative TANGO2 proteins bind heme with 1:1 stoichiometry and a relatively low dissociation constant. Protein interaction analyses substantiated that HtpA directly interacts with the cytochrome c maturation system. Our findings shed light on cross-membrane transport of heme in bacteria and extend the understanding of TANGO2 proteins. IMPORTANCE The intracellular trafficking of heme, an essential cofactor for hemoproteins, remains underexplored even in eukaryotes, let alone bacteria. Here we developed a high-throughput method by which HtpA, a homolog of eukaryotic TANGO2 proteins, was identified to be a heme-binding protein that enhances cytochrome c biosynthesis and catalase activity in Shewanella oneidensis. HtpA interacts with the cytochrome c biosynthesis system directly, supporting that this protein, like TANGO2, functions in intracellular heme trafficking. HtpA homologs are widely distributed, but a large majority of them were found to be non-exchangeable, likely a result of parallel evolution. By substantiating the heme-trafficking nature of HtpA and its eukaryotic homologs, our findings provide general insight into the heme-trafficking process and highlight the functional conservation along evolution in all living organisms.
Collapse
Affiliation(s)
- Sirui Han
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kailun Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhi J. Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Zeng S, Shi Q, Liu Y, Li M, Lin D, Zhang S, Li Q, Pu J, Shen C, Huang B, Chen C, Zeng J. The small RNA PrrH of Pseudomonas aeruginosa regulates hemolysis and oxidative resistance in bloodstream infection. Microb Pathog 2023; 180:106124. [PMID: 37105322 DOI: 10.1016/j.micpath.2023.106124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Small regulatory RNAs (sRNAs) regulate multiple physiological functions in bacteria, and sRNA PrrH can regulate iron homeostasis and virulence. However, the function of PrrH in Pseudomonas aeruginosa (P. aeruginosa) bloodstream infection (BSI) is largely unknown. The aim of this study was to investigate the role of PrrH in P. aeruginosa BSI model. First, P. aeruginosa PAO1 was co-cultured with peripheral blood cells for 6 h qRT-PCR results showed a transient up-regulation of PrrH expression at 1 h. Simultaneously, the expression of iron uptake genes fpvA, pvdS and phuR was upregulated. In addition, the use of iron chelator 2,2'-dipyridyl to create low-iron conditions caused up-regulation of PrrH expression, a result similar to the BSI model. Furthermore, the addition of FeCl3 was found to decrease PrrH expression. These results support the hypothesis that the expression of PrrH is regulated by iron in BSI model. Then, to clarify the effect of PrrH on major cells in the blood, we used PrrH mutant, overexpressing and wild-type strains to act separately on erythrocytes and neutrophils. On one hand, the hemolysis assay revealed that PrrH contributes to the hemolytic activity of PAO1, and its effect was dependent on the T3SS system master regulator gene exsA, yet had no association with the hemolytic phospholipase C (plcH), pldA, and lasB elastase genes. On the other hand, PrrH mutant enhanced the oxidative resistance of PAO1 in the neutrophils co-culture assay, H2O2-treated growth curve and conventional plate spotting assays. Furthermore, the katA was predicted to be a target gene of PrrH by bioinformatics software, and then verified by qPCR and GFP reporter system. In summary, dynamic changes in the expression of prrH are iron-regulated during PAO1 bloodstream infection. In addition, PrrH promotes the hemolytic activity of P. aeruginosa in an exsA-dependent manner and negatively regulates katA to reduce the oxidative tolerance of P. aeruginosa.
Collapse
Affiliation(s)
- Shenghe Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qixuan Shi
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - YinZhen Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Mo Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Dongling Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Shebin Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Qiwei Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Jieying Pu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Cong Shen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China.
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China.
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
7
|
Schalk IJ, Perraud Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environ Microbiol 2022; 25:811-831. [PMID: 36571575 DOI: 10.1111/1462-2920.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium found in many natural and man-made environments. It is also a pathogen for plants, animals, and humans. As for almost all living organisms, iron is an essential nutrient for the growth of P. aeruginosa. The bacterium has evolved complex systems to access iron and maintain its homeostasis to survive in diverse natural and dynamic host environments. To access ferric iron, P. aeruginosa is able to produce two siderophores (pyoverdine and pyochelin), as well as use a variety of siderophores produced by other bacteria (mycobactins, enterobactin, ferrioxamine, ferrichrome, vibriobactin, aerobactin, rhizobactin and schizokinen). Furthermore, it can also use citrate, in addition to catecholamine neuromediators and plant-derived mono catechols, as siderophores. The P. aeruginosa genome also encodes three heme-uptake pathways (heme being an iron source) and one ferrous iron acquisition pathway. This review aims to summarize current knowledge concerning the molecular mechanisms involved in all the iron and heme acquisition strategies used by P. aeruginosa.
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
8
|
Normant V, Kuhn L, Munier M, Hammann P, Mislin GLA, Schalk IJ. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in Pseudomonas aeruginosa Cells. ACS Infect Dis 2022; 8:183-196. [PMID: 34878758 DOI: 10.1021/acsinfecdis.1c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron is an essential nutriment for almost all organisms, but this metal is poorly bioavailable. During infection, bacteria access iron from the host by importing either iron or heme. Pseudomonas aeruginosa, a gram-negative pathogen, secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), to access iron and is also able to use many siderophores produced by other microorganisms (called xenosiderophores). To access heme, P. aeruginosa uses three distinct uptake pathways, named Has, Phu, and Hxu. We previously showed that P. aeruginosa expresses the Has and Phu heme uptake systems and the PVD- and PCH-dependent iron uptake pathways in iron-restricted growth conditions, using proteomic and RT-qPCR approaches. Here, using the same approaches, we show that physiological concentrations of hemin in the bacterial growth medium result in the repression of the expression of the proteins of the PVD- and PCH-dependent iron uptake pathways, leading to less production of these two siderophores. This indicates that the pathogen adapts its phenotype to use hemin as an iron source rather than produce PVD and PCH to access iron. Moreover, the presence of both hemin and a xenosiderophore resulted in (i) the strong induction of the expression of the proteins of the added xenosiderophore uptake pathway, (ii) repression of the PVD- and PCH-dependent iron uptake pathways, and (iii) no effect on the expression levels of the Has, Phu, or Hxu systems, indicating that bacteria use both xenosiderophores and heme to access iron.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Mathilde Munier
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Isabelle J. Schalk
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| |
Collapse
|
9
|
Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev 2022; 46:6506450. [PMID: 35026033 DOI: 10.1093/femsre/fuac002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.
Collapse
Affiliation(s)
- Aileen Krüger
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Marc Keppel
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| |
Collapse
|