1
|
Ashida K, Kitabayashi A, Nishiyama K, Nakano SI. Comprehensive Analysis of Stability and Variability of DNA Minimal I-Motif Structures. Molecules 2025; 30:1831. [PMID: 40333875 PMCID: PMC12029255 DOI: 10.3390/molecules30081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Cytosine-rich DNA sequences form i-motif structures associated with various cellular functions including gene regulation. DNA sequences containing consecutive C residues are widely deemed essential for i-motif formation; however, some sequences lacking C-tracts have been reported to form minimal i-motif structures. We systematically investigated the variability in the minimal i-motif-forming DNA sequence comprising two TCGTTCCGT sequence units, which forms two C:C+ pairs and two G:C:G:T base tetrads. A comprehensive analysis of structural stability by DNA thermal melting temperature measurements revealed that oligonucleotides disrupting the formation of the base tetrad or its stacking interactions with a C:C+ pair prevent stable i-motif formation, and modifications to the sequence context and length of the lateral loops are difficult. This study further demonstrated that spermine effectively restores the stability reduction caused by creating a bulge, long loop, or dangling end within the minimal i-motif structure, which is less pronounced in the C-rich i-motif. The results suggest that the formation of minimal i-motifs with various sequences is facilitated in polyamine-rich environments, such as the nucleus of mammalian cells. These findings are valuable for identifying potential i-motif-forming sites lacking C-tracts in genomes and provide insights into the electrostatic interactions between i-motif structures and biological polyamines.
Collapse
Affiliation(s)
| | | | | | - Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
2
|
Ghosh A, Pandey S, Joshi D, Rana P, Ansari A, Sundar J, Singh P, Khan Y, Ekka M, Chakraborty D, Maiti S. Identification of G-quadruplex structures in MALAT1 lncRNA that interact with nucleolin and nucleophosmin. Nucleic Acids Res 2023; 51:9415-9431. [PMID: 37558241 PMCID: PMC11314421 DOI: 10.1093/nar/gkad639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Nuclear-retained long non-coding RNAs (lncRNAs) including MALAT1 have emerged as critical regulators of many molecular processes including transcription, alternative splicing and chromatin organization. Here, we report the presence of three conserved and thermodynamically stable RNA G-quadruplexes (rG4s) located in the 3' region of MALAT1. Using rG4 domain-specific RNA pull-down followed by mass spectrometry and RNA immunoprecipitation, we demonstrated that the MALAT1 rG4 structures are specifically bound by two nucleolar proteins, Nucleolin (NCL) and Nucleophosmin (NPM). Using imaging, we found that the MALAT1 rG4s facilitate the localization of both NCL and NPM to nuclear speckles, and specific G-to-A mutations that disrupt the rG4 structures compromised the localization of both NCL and NPM in speckles. In vitro biophysical studies established that a truncated version of NCL (ΔNCL) binds tightly to all three rG4s. Overall, our study revealed new rG4s within MALAT1, established that they are specifically recognized by NCL and NPM, and showed that disrupting the rG4s abolished localization of these proteins to nuclear speckles.
Collapse
Affiliation(s)
- Arpita Ghosh
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Satya Prakash Pandey
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Dheeraj Chandra Joshi
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Priya Rana
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Asgar Hussain Ansari
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | | | - Praveen Singh
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Yasmeen Khan
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Mary Krishna Ekka
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune
411 008, India
| |
Collapse
|
3
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Hauf S, Yokobayashi Y. Chemical control of phase separation in DNA solutions. Chem Commun (Camb) 2023; 59:3751-3754. [PMID: 36911995 DOI: 10.1039/d2cc06901f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We designed a series of DNA sequences comprising a trinucleotide repeat segment and a small molecule-binding aptamer. Optimization of the DNA sequences and reaction conditions enabled chemical control of phase separation of DNA condensates. Our results demonstrate a new strategy to regulate biomolecular phase transition.
Collapse
Affiliation(s)
- Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 904-0495, Japan.
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 904-0495, Japan.
| |
Collapse
|
5
|
Williams AM, Dickson TM, Lagoa-Miguel CA, Bevilacqua PC. Biological solution conditions and flanking sequence modulate LLPS of RNA G-quadruplex structures. RNA (NEW YORK, N.Y.) 2022; 28:1197-1209. [PMID: 35760522 PMCID: PMC9380743 DOI: 10.1261/rna.079196.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 05/17/2023]
Abstract
Guanine-rich regions of DNA or RNA can form structures with two or more consecutive G-quartets called G-quadruplexes (GQ). Recent studies reveal the potential for these structures to aggregate in vitro. Here, we report effects of in vivo concentrations of additives-amino acids, nucleotides, and crowding agents-on the structure and solution behavior of RNAs containing GQ-forming sequences. We found that cytosine nucleotides destabilize a model GQ structure at biological salt concentrations, while free amino acids and other nucleotides do not do so to a substantial degree. We also report that the tendency of folded GQs to form droplets or to aggregate depends on the nature of flanking sequence and the presence of additives. Notably, in the presence of biological amounts of polyamines, flanking regions on the 5'-end of the RNA drive more droplet-like phase separation, while flanking regions on the 3'-end, as well as both the 5'- and 3'-ends, induce more condensed, granular structures. Finally, we provide an example of a biological sequence in the presence of polyamines and show that crowders such as PEG and dextran can selectively cause its phase separation. These findings have implications for the participation of GQS in LLPS in vivo.
Collapse
Affiliation(s)
- Allison M Williams
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Taylor M Dickson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Claudia A Lagoa-Miguel
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Liu Z, Chen J, Bai Q, Lin YN, Liang D. Coacervate Formed by an ATP-Binding Aptamer and Its Dynamic Behavior under Nonequilibrium Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6425-6434. [PMID: 35543367 DOI: 10.1021/acs.langmuir.2c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although numerous protocell models have been developed to explore the possible pathway of the origin of life on the early earth, few truly fulfill the roles of the DNA/RNA sequence and ATP molecules, which are keys to cell replication and evolution. The ATP-binding aptamer offers an opportunity to combine sequence and energy molecules. In this work, we choose the coacervate droplet as the protocell model and investigate the interaction of the DNA aptamer, poly(l-lysine)(PLL), and ATP under varying conditions. PLL and aptamers form solid precipitates, which spontaneously transform to coacervate droplets as ATP is introduced. The selective uptake and sequestration of exogenous molecules is achieved by the ATP-containing coacervates. As an electric field is applied to expel ATP, the portion of the droplet deficient in ATP becomes solid. The solid/liquid phase ratio is tunable by varying the electric field strength and excitation time. Together with the vacuolization process, a solid head with a soft mouth periodically opening and closing is created. Moreover, the composite coacervate droplet gradually grows as it is treated with an electric field and cannot recover to the original liquid phase after the power is turned off and replenished with ATP. Our work highlights that the proper integration of the DNA sequence, ATP, and energy input could be a powerful strategy for creating a protocell with certain living features.
Collapse
Affiliation(s)
- Zhijun Liu
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaxin Chen
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qingwen Bai
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ya-Nan Lin
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Bevilacqua PC, Williams AM, Chou HL, Assmann SM. RNA multimerization as an organizing force for liquid-liquid phase separation. RNA (NEW YORK, N.Y.) 2022; 28:16-26. [PMID: 34706977 PMCID: PMC8675289 DOI: 10.1261/rna.078999.121] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
RNA interactions are exceptionally strong and highly redundant. As such, nearly any two RNAs have the potential to interact with one another over relatively short stretches, especially at high RNA concentrations. This is especially true for pairs of RNAs that do not form strong self-structure. Such phenomena can drive liquid-liquid phase separation, either solely from RNA-RNA interactions in the presence of divalent or organic cations, or in concert with proteins. RNA interactions can drive multimerization of RNA strands via both base-pairing and tertiary interactions. In this article, we explore the tendency of RNA to form stable monomers, dimers, and higher order structures as a function of RNA length and sequence through a focus on the intrinsic thermodynamic, kinetic, and structural properties of RNA. The principles we discuss are independent of any specific type of biomolecular condensate, and thus widely applicable. We also speculate how external conditions experienced by living organisms can influence the formation of nonmembranous compartments, again focusing on the physical and structural properties of RNA. Plants, in particular, are subject to diverse abiotic stresses including extreme temperatures, drought, and salinity. These stresses and the cellular responses to them, including changes in the concentrations of small molecules such as polyamines, salts, and compatible solutes, have the potential to regulate condensate formation by melting or strengthening base-pairing. Reversible condensate formation, perhaps including regulation by circadian rhythms, could impact biological processes in plants, and other organisms.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Allison M Williams
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|