1
|
Zhang Q, Rosa RSL, Ray A, Durlet K, Dorrazehi GM, Bernardi RC, Alsteens D. Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy. Nat Commun 2025; 16:6. [PMID: 39747000 PMCID: PMC11696146 DOI: 10.1038/s41467-024-55358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding. Our results show that the MBP preferentially associates with cholesterol-rich membranes, and we find that cholesterol depletion significantly reduces viral infectivity. Furthermore, we observe that the disulfide bridge stabilizes the MBP's interaction with the membrane, suggesting a structural role in viral entry. Together, these findings highlight the importance of membrane composition and peptide structure in SARS-CoV-2 infectivity and suggest that targeting the disulfide bridge could provide a therapeutic strategy against infection.
Collapse
Affiliation(s)
- Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Raissa S L Rosa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Kimberley Durlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Gol Mohammad Dorrazehi
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Rafael C Bernardi
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
- Department of Physics, Auburn University, Auburn, AL, USA.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.
- WELBIO department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium.
| |
Collapse
|
2
|
Birtles D, Lee J. Exploring the influence of anionic lipids in the host cell membrane on viral fusion. Biochem Soc Trans 2024; 52:2593-2602. [PMID: 39700018 PMCID: PMC11668307 DOI: 10.1042/bst20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Membrane fusion is an essential component of the viral lifecycle that allows the delivery of the genetic information of the virus into the host cell. Specialized viral glycoproteins exist on the surface of mature virions where they facilitate fusion through significant conformational changes, ultimately bringing opposing membranes into proximity until they eventually coalesce. This process can be positively influenced by a number of specific cellular factors such as pH, enzymatic cleavage, divalent ions, and the composition of the host cell membrane. In this review, we have summarized how anionic lipids have come to be involved in viral fusion and how the endosomal resident anionic lipid BMP has become increasingly implicated as an important cofactor for those viruses that fuse via the endocytic pathway.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| |
Collapse
|
3
|
Birtles D, Guiyab L, Abbas W, Lee J. Positive residues of the SARS-CoV-2 fusion domain are key contributors to the initiation of membrane fusion. J Biol Chem 2024; 300:107564. [PMID: 39002677 PMCID: PMC11357847 DOI: 10.1016/j.jbc.2024.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
SARS-CoV-2 is one of the most infectious viruses ever recorded. Despite a plethora of research over the last several years, the viral life cycle is still not well understood, particularly membrane fusion. This process is initiated by the fusion domain (FD), a highly conserved stretch of amino acids consisting of a fusion peptide (FP) and fusion loop (FL), which in synergy perturbs the target cells' lipid membrane to lower the energetic cost necessary for fusion. In this study, through a mutagenesis-based approach, we have investigated the basic residues within the FD (K825, K835, R847, K854) utilizing an in vitro fusion assay and 19F NMR, validated by traditional 13C 15N techniques. Alanine and charge-conserving mutants revealed every basic residue plays a highly specific role within the mechanism of initiating fusion. Intriguingly, K825A led to increased fusogenecity which was found to be correlated to the number of amino acids within helix one, further implicating the role of this specific helix within the FD's fusion mechanism. This work has found basic residues to be important within the FDs fusion mechanism and highlights K825A, a specific mutation made within the FD of the SARS-CoV-2 spike protein, as requiring further investigation due to its potential to contribute to a more virulent strain of SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Lijon Guiyab
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Wafa Abbas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
4
|
Birtles D, Abbas W, Lee J. Bis(Monoacylglycero)Phosphate Promotes Membrane Fusion Facilitated by the SARS-CoV-2 Fusion Domain. J Phys Chem B 2024; 128:2675-2683. [PMID: 38466655 DOI: 10.1021/acs.jpcb.3c07863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Membrane fusion is a critical component of the viral lifecycle. For SARS-CoV-2, fusion is facilitated by the spike glycoprotein and can take place via either the plasma membrane or the endocytic pathway. The fusion domain (FD), which is found within the spike glycoprotein, is primarily responsible for the initiation of fusion as it embeds itself within the target cell's membrane. A preference for SARS-CoV-2 to fuse at low pH akin to the environment of the endocytic pathway has already been established; however, the impact of the target cell's lipid composition on the FD has yet to be explored. Here, we have shown that the SARS-CoV-2 FD preferentially initiates fusion at the late endosomal membrane over the plasma membrane, on the basis of lipid composition alone. A positive, fusogenic relationship with anionic lipids from the plasma membrane (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine) and endosomal membrane (BMP: bis(monoacylglycero)phosphate) was established, with a large preference demonstrated for the latter. When comparing the binding affinity and secondary structure of the FD in the presence of different anionic lipids, little deviation was evident while the charge was maintained. However, it was discovered that BMP had a subtle, negative impact on lipid packing in comparison to that of POPS. Furthermore, an inverse relationship between lipid packing and the fusogenecity of the SARS-CoV-2 FD was witnessed. In conclusion, the SARS-CoV-2 FD preferentially initiates fusion at a membrane resembling that of the late endosomal compartment, predominately due to the presence of BMP and its impact on lipid packing.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Wafa Abbas
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| |
Collapse
|
5
|
Pennington H, Birtles D, Shi ZW, Lee J. A Salt Bridge and Disulfide Bond within the Lassa Virus Fusion Domain Are Required for the Initiation of Membrane Fusion. ACS OMEGA 2024; 9:4920-4930. [PMID: 38313535 PMCID: PMC10831964 DOI: 10.1021/acsomega.3c08632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Infection with Lassa virus (LASV), an Old-World arenavirus that is endemic to West Africa, causes Lassa fever, a lethal hemorrhagic fever. Delivery of LASV's genetic material into the host cell is an integral component of its lifecycle. This is accomplished via membrane fusion, a process initiated by a hydrophobic sequence known as the fusion domain (FD). The LASV FD (G260-N295) consists of two structurally distinct regions: an N-terminal fusion peptide (FP: G260-T274) and an internal fusion loop (FL: C279-N295) that is connected by a short linker region (P275-Y278). However, the molecular mechanisms behind how the LASV FD initiates fusion remain unclear. Here, we demonstrate that the LASV FD adopts a fusogenic, helical conformation at a pH akin to that of the lysosomal compartment. Additionally, we identified a conserved disulfide bond (C279 and C292) and salt bridge (R282 and E289) within the FL that are pertinent to fusion. We found that the disulfide bond must be present so that the FD can bind to the lipid bilayer and subsequently initiate fusion. Moreover, the salt bridge is essential for the secondary structure of the FD such that it can associate with the lipid bilayer in the proper orientation for full functionality. In conclusion, our findings indicate that the LASV FD preferentially initiates fusion at a pH akin to that of the lysosome through a mechanism that requires a conserved salt bridge and, to a lesser extent, an intact disulfide bond within the internal FL.
Collapse
Affiliation(s)
- Hallie
N. Pennington
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Daniel Birtles
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Zoe W. Shi
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Jinwoo Lee
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| |
Collapse
|
6
|
Van Doren SR, Scott BS, Koppisetti RK. SARS-CoV-2 fusion peptide sculpting of a membrane with insertion of charged and polar groups. Structure 2023; 31:1184-1199.e3. [PMID: 37625399 PMCID: PMC10592393 DOI: 10.1016/j.str.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
The fusion peptide of SARS-CoV-2 spike is essential for infection. How this charged and hydrophobic domain occupies and affects membranes needs clarification. Its depth in zwitterionic, bilayered micelles at pH 5 (resembling late endosomes) was measured by paramagnetic NMR relaxation enhancements used to bias molecular dynamics simulations. Asp830 inserted deeply, along with Lys825 or Lys835. Protonation of Asp830 appeared to enhance agreement of simulated and NMR-measured depths. While the fusion peptide occupied a leaflet of the DMPC bilayer, the opposite leaflet invaginated with influx of water and choline head groups in around Asp830 and bilayer-inserted polar side chains. NMR-detected hydrogen exchange found corroborating hydration of the backbone of Thr827-Phe833 inserted deeply in bicelles. Pinching of the membrane at the inserted charge and the intramembrane hydration of polar groups agree with theory. Formation of corridors of hydrated, inward-turned head groups was accompanied by flip-flop of head groups. Potential roles of the defects are discussed.
Collapse
Affiliation(s)
- Steven R Van Doren
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA.
| | - Benjamin S Scott
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rama K Koppisetti
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
8
|
Niort K, Dancourt J, Boedec E, Al Amir Dache Z, Lavieu G, Tareste D. Cholesterol and Ceramide Facilitate Membrane Fusion Mediated by the Fusion Peptide of the SARS-CoV-2 Spike Protein. ACS OMEGA 2023; 8:32729-32739. [PMID: 37720777 PMCID: PMC10500581 DOI: 10.1021/acsomega.3c03610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 entry into host cells is mediated by the Spike (S) protein of the viral envelope. The S protein is composed of two subunits: S1 that induces binding to the host cell via its interaction with the ACE2 receptor of the cell surface and S2 that triggers fusion between viral and cellular membranes. Fusion by S2 depends on its heptad repeat domains that bring membranes close together and its fusion peptide (FP) that interacts with and perturbs the membrane structure to trigger fusion. Recent studies have suggested that cholesterol and ceramide lipids from the cell surface may facilitate SARS-CoV-2 entry into host cells, but their exact mode of action remains unknown. We have used a combination of in vitro liposome-liposome and in situ cell-cell fusion assays to study the lipid determinants of S-mediated membrane fusion. Our findings reveal that both cholesterol and ceramide lipids facilitate fusion, suggesting that targeting these lipids could be effective against SARS-CoV-2. As a proof of concept, we examined the effect of chlorpromazine (CPZ), an antipsychotic drug known to perturb membrane structure. Our results show that CPZ effectively inhibits S-mediated membrane fusion, thereby potentially impeding SARS-CoV-2 entry into the host cell.
Collapse
Affiliation(s)
- Kristina Niort
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| | - Julia Dancourt
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - Erwan Boedec
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| | - Zahra Al Amir Dache
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - Grégory Lavieu
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - David Tareste
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| |
Collapse
|
9
|
Qiu C, Whittaker GR, Gellman SH, Daniel S, Abbott NL. Interactions of SARS-CoV-2 and MERS-CoV fusion peptides measured using single-molecule force methods. Biophys J 2023; 122:646-660. [PMID: 36650897 PMCID: PMC9841730 DOI: 10.1016/j.bpj.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/07/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
We address the challenge of understanding how hydrophobic interactions are encoded by fusion peptide (FP) sequences within coronavirus (CoV) spike proteins. Within the FPs of severe acute respiratory syndrome CoV 2 and Middle East respiratory syndrome CoV (MERS-CoV), a largely conserved peptide sequence called FP1 (SFIEDLLFNK and SAIEDLLFDK in SARS-2 and MERS, respectively) has been proposed to play a key role in encoding hydrophobic interactions that drive viral-host cell membrane fusion. Although a non-polar triad (Leu-Leu-Phe (LLF)) is common to both FP1 sequences, and thought to dominate the encoding of hydrophobic interactions, FP1 from SARS-2 and MERS differ in two residues (Phe 2 versus Ala 2 and Asn 9 versus Asp 9, respectively). Here we explore whether single-molecule force measurements can quantify hydrophobic interactions encoded by FP1 sequences, and then ask whether sequence variations between FP1 from SARS-2 and MERS lead to significant differences in hydrophobic interactions. We find that both SARS-2 and MERS wild-type FP1 generate measurable hydrophobic interactions at the single-molecule level, but that SARS-2 FP1 encodes a substantially stronger hydrophobic interaction than its MERS counterpart (1.91 ± 0.03 nN versus 0.68 ± 0.03 nN, respectively). By performing force measurements with FP1 sequences with single amino acid substitutions, we determine that a single-residue mutation (Phe 2 versus Ala 2) causes the almost threefold difference in the hydrophobic interaction strength generated by the FP1 of SARS-2 versus MERS, despite the presence of LLF in both sequences. Infrared spectroscopy and circular dichroism measurements support the proposal that the outsized influence of Phe 2 versus Ala 2 on the hydrophobic interaction arises from variation in the secondary structure adopted by FP1. Overall, these insights reveal how single-residue diversity in viral FPs, including FP1 of SARS-CoV-2 and MERS-CoV, can lead to substantial changes in intermolecular interactions proposed to play a key role in viral fusion, and hint at strategies for regulating hydrophobic interactions of peptides in a range of contexts.
Collapse
Affiliation(s)
- Cindy Qiu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Nicholas L Abbott
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
10
|
Sardar A, Bera T, Kumar Samal S, Dewangan N, Kamble M, Guha S, Tarafdar PK. C-Terminal Lipidation of SARS-CoV-2 Fusion Peptide Reinstates Superior Membrane Fusion Catalytic Ability. Chemistry 2023; 29:e202203034. [PMID: 36422064 DOI: 10.1002/chem.202203034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
The spike (S) protein of severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) mediates a critical stage in infection, the fusion between viral and host membranes. The protein is categorized as a class I viral fusion protein and has two distinct cleavage sites that can be activated by proteases. The activation deploys the fusion peptide (FP) for insertion into the target cell membranes. Recent studies including our experiments showed that the FP was unable to modulate the kinetics of fusion at a low peptide-to-lipid ratio akin to the spike density at the viral surface. Therefore, we modified the C terminus of FP and attached a myristoyl chain (C-myr-FP) to restrict the C terminus near to the interface, bridge both membranes, and increase the effective local concentration. The lipidated FP (C-myr-FP) of SARS-CoV-2 greatly accelerates membrane fusion at a low peptide-to-lipid ratio as compared to the FP with no lipidation. Biophysical experiments suggest that C-myr-FP adopts a helical structure, perturbs the membrane interface, and increases water penetration to catalyze fusion. Scrambled peptide (C-myr-sFP) and truncated peptide (C-myr-8FP) could not significantly catalyze the fusion, thus suggesting the important role of myristoylation and the N terminus. C-myr-FP enhances murine coronavirus infection by promoting syncytia formation in L2 cells. The C-terminal lipidation of the FP might be a useful strategy to induce artificial fusion in biomedical applications.
Collapse
Affiliation(s)
- Avijit Sardar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Tapas Bera
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Santosh Kumar Samal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Nikesh Dewangan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Mithila Kamble
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Samit Guha
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
11
|
Villalaín J. Interaction of Lassa virus fusion and membrane proximal peptides with late endosomal membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184031. [PMID: 35964711 DOI: 10.1016/j.bbamem.2022.184031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Mammarenaviruses include many significant worldwide-widespread human pathogens, among them Lassa virus (LASV), having a dramatic morbidity and mortality rate. They are a potential high-risk menace to the worldwide public health since there are no treatments and there is a high possibility of animal-to-human and human-to-human viral transmission. These viruses enter into the cells by endocytosis fusing its membrane envelope with the late endosomal membrane thanks to the glycoprotein GP2, a membrane fusion protein of class I. This protein contains different domains, among them the N-terminal fusion peptide (NFP), the internal fusion loop (IFL), the membrane proximal external region (MPER) and the transmembrane domain (TMD). All these domains are implicated in the membrane fusion process. In this work, we have used an all-atom molecular dynamics study to know the binding of these protein domains with a complex membrane mimicking the late endosome one. We show that the NFP/IFL domain is capable of spontaneously inserting into the membrane without a significant change of secondary structure, the MPER domain locates at the bilayer interface with an orientation parallel to the membrane surface and tends to interact with other MPER domains, and the TMD domain tilts inside the bilayer. Moreover, they predominantly interact with negatively charged phospholipids. Overall, these membrane-interacting domains would characterise a target that would make possible to find effective antiviral molecules against LASV in particular and Mammarenaviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
12
|
Shen H, Wu Z. Effect of Disulfide Bridge on the Binding of SARS-CoV-2 Fusion Peptide to Cell Membrane: A Coarse-Grained Study. ACS OMEGA 2022; 7:36762-36775. [PMID: 36278087 PMCID: PMC9583636 DOI: 10.1021/acsomega.2c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we present the parameterization of the CAVS coarse-grained (CG) force field for 20 amino acids, and our CG simulations show that the CAVS force field could accurately predict the amino acid tendency of the secondary structure. Then, we used the CAVS force field to investigate the binding of a severe acute respiratory syndrome-associated coronavirus fusion peptide (SARS-CoV-2 FP) to a phospholipid bilayer: a long FP (FP-L) containing 40 amino acids and a short FP (FP-S) containing 26 amino acids. Our CAVS CG simulations displayed that the binding affinity of the FP-L to the bilayer is higher than that of the FP-S. We found that the FP-L interacted more strongly with membrane cholesterol than the FP-S, which should be attributed to the stable helical structure of the FP-L at the C-terminus. In addition, we discovered that the FP-S had one major and two minor membrane-bound states, in agreement with previous all-atom molecular dynamics (MD) studies. However, we found that both the C-terminal and N-terminal amino acid residues of the FP-L can strongly interact with the bilayer membrane. Furthermore, we found that the disulfide bond formed between Cys840 and Cys851 stabilized the helices of the FP-L at the C-terminus, enhancing the interaction between the FP-L and the bilayer membrane. Our work indicates that the stable helical structure is crucial for binding the SARS-CoV-2 FP to cell membranes. In particular, the helical stability of FP should have a significant influence on the FP-membrane binding.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou
Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Zhenhua Wu
- Department
of Big Data and Artificial Intelligence, Guizhou Vocational Technology College of Electronics & Information, Kaili 556000, China
| |
Collapse
|
13
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
14
|
Birtles D, Oh AE, Lee J. Exploring the
pH
dependence of the
SARS‐CoV
‐2 complete fusion domain and the role of its unique structural features. Protein Sci 2022. [PMCID: PMC9538437 DOI: 10.1002/pro.4390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
SARS‐CoV‐2 may enter target cells through the process of membrane fusion at either the plasma (~pH 7.4–7.0) or endosomal (~pH 6.5–5.0) membrane in order to deliver its genetic information. The fusion domain (FD) of the spike glycoprotein is responsible for initiating fusion and is thus integral to the viral life cycle. The FD of SARS‐CoV‐2 is unique in that it consists of two structurally distinctive regions referred to as the fusion peptide (FP) and the fusion loop (FL); yet the molecular mechanisms behind how this FD perturbs the membrane to initiate fusion remains unclear. In this study via solution NMR, we witnessed only a slight conformational change in the FD between pH 7.4 and pH 5.0, resulting in a minor elongation of helix 1. However, we found that the FD's ability to mediate membrane fusion has a large and significant pH dependence, with fusion events being more readily induced at low pH. Interestingly, a biphasic relationship between the environmental pH and fusogenicity was discovered, suggesting a preference for the FD to initiate fusion at the late endosomal membrane. Furthermore, the conserved disulfide bond and hydrophobic motif “LLF” were found to be critical for the function of the complete FD, with minimal activity witnessed when either was perturbed. In conclusion, these findings indicate that the SARS‐CoV‐2 FD preferably initiates fusion at a pH similar to the late endosome through a mechanism that heavily relies on the internal disulfide bond of the FL and hydrophobic LLF motif within the FP.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| | - Anna E. Oh
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| |
Collapse
|
15
|
Shen H, Wu Z, Chen L. Different Binding Modes of SARS-CoV-1 and SARS-CoV-2 Fusion Peptides to Cell Membranes: The Influence of Peptide Helix Length. J Phys Chem B 2022; 126:4261-4271. [PMID: 35658454 PMCID: PMC9195569 DOI: 10.1021/acs.jpcb.2c01295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Although the amino acid sequences of SARS-CoV-1 and SARS-CoV-2 fusion peptides (FPs) are highly conserved, the cryo-electron microscopy structures of the SARS-CoV-1 and SARS-CoV-2 spike proteins show that the helix length of SARS-CoV-1 FP is longer than that of SARS-CoV-2 FP. In this work, we simulated the membrane-binding models of SARS-CoV-1 and SARS-CoV-2 FPs and compared the binding modes of the FPs with the POPC/POPE/cholesterol bilayer membrane. Our simulation results show that the SARS-CoV-2 FP binds to the bilayer membrane more effectively than the SARS-CoV-1 FP. It is seen that the short N-terminal helix of SARS-CoV-2 FP is more favorable to insert into the target membrane than the long N-terminal helix of SARS-CoV-1 FP. Meanwhile, the potential of mean force calculations showed that the SARS-CoV-2 FP would prefer only one binding mode (N-terminal binding), whereas the SARS-CoV-1 FP has two favorable membrane-binding modes (C-terminal and N-terminal binding modes). Moreover, in the case of SARS-CoV-1 FP binding to the target membrane, the transition between the two binding modes is relatively fast. Finally, we discovered that the membrane-binding mode would influence the helix length of SARS-CoV-1 FP, while the helix length of SARS-CoV-2 FP could be stably maintained in the membrane-bound configurations. This work suggests that the short helix might endow the FP with high membrane-anchoring strength. In particular, the membrane-penetrating residues (Phe, Ile, and Leu) of short α-helix interact with the cell membrane more strongly than those of long α-helix.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou
Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Zhenhua Wu
- Department
of Computer Science, Guizhou Vocational
Technology College of Electronics & Information, Kaili 556000, China
| | - Ling Chen
- Guizhou
Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
16
|
Functional Peptides from SARS-CoV-2 Binding with Cell Membrane: From Molecular Dynamics Simulations to Cell Demonstration. Cells 2022; 11:cells11111738. [PMID: 35681433 PMCID: PMC9179371 DOI: 10.3390/cells11111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/03/2022] Open
Abstract
Herein, we have verified the interaction between the functional peptides from the SARS-CoV-2 and cell membrane, and we further proved that peptides exhibit little membrane disruption. The specific amino acids (Lys, Ile, Glu, Asn, Gln, etc.) with charge or hydrophobic residues play a significant role during the functional-peptide binding to membrane. The findings could provide the hints related to viral infection and also might pave the way for development of new materials based on peptides with membrane-binding activity, which would enable functional peptides further as peptide adjuvants, in order to help deliver the cancer drug into tumor cells for the efficient tumor therapy.
Collapse
|
17
|
Pennington H, Lee J. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Biosci Rep 2022; 42:BSR20211930. [PMID: 35088070 PMCID: PMC8844875 DOI: 10.1042/bsr20211930] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever-a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit-a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.
Collapse
Affiliation(s)
- Hallie N. Pennington
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| |
Collapse
|
18
|
Carbohydrate Ligands for COVID-19 Spike Proteins. Viruses 2022; 14:v14020330. [PMID: 35215921 PMCID: PMC8880561 DOI: 10.3390/v14020330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
An outbreak of SARS-CoV-2 coronavirus (COVID-19) first detected in Wuhan, China, has created a public health emergency all over the world. The pandemic has caused more than 340 million confirmed cases and 5.57 million deaths as of 23 January 2022. Although carbohydrates have been found to play a role in coronavirus binding and infection, the role of cell surface glycans in SARS-CoV-2 infection and pathogenesis is still not understood. Herein, we report that the SARS-CoV-2 spike protein S1 subunit binds specifically to blood group A and B antigens, and that the spike protein S2 subunit has a binding preference for Lea antigens. Further examination of the binding preference for different types of red blood cells (RBCs) indicated that the spike protein S1 subunit preferentially binds with blood group A RBCs, whereas the spike protein S2 subunit prefers to interact with blood group Lea RBCs. Angiotensin converting enzyme 2 (ACE2), a known target of SARS-CoV-2 spike proteins, was identified to be a blood group A antigen-containing glycoprotein. Additionally, 6-sulfo N-acetyllactosamine was found to inhibit the binding of the spike protein S1 subunit with blood group A RBCs and reduce the interaction between the spike protein S1 subunit and ACE2.
Collapse
|