1
|
Yin L, Zhang J, Zhu Z, Peng X, Lan H, Ayoub A, Tan M, Zhou B, He Y, Wang S, Lu Y, Liu W, Xiong X, Huang J, Dou Y, Mao F, Sun Y. The FBXW7-KMT2 axis in cancer-associated fibroblasts controls tumor growth via an epigenetic-paracrine mechanism. Proc Natl Acad Sci U S A 2025; 122:e2423130122. [PMID: 40127278 PMCID: PMC12002300 DOI: 10.1073/pnas.2423130122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
F-box and WD repeat domain-containing 7 (FBXW7) is a tumor suppressor that targets various oncoproteins for degradation, but its role in modulating cancer-associated fibroblasts (CAFs) in the tumor microenvironment remains elusive. Here, we report that FBXW7 expression is gradually downregulated in CAFs during the progression of human pancreatic and lung cancers. Mechanically, FBXW7 inhibits histone lysine methyltransferase 2 (KMT2) methyltransferase activity via retinoblastoma binding protein 5 (RbBP5) binding, whereas FBXW7 depletion abrogates the binding to activate KMT2, leading to increased H3K4 methylations and global upregulation of gene expression. Activation of the interleukin-17 (IL-17) signaling pathway triggers the secretion of cytokines and chemokines to promote migration, invasion, and sphere formation of lung cancer cells. Coinjection of Fbxw7-depleted mouse embryonic fibroblasts with cancer cells enhances in vivo tumor growth, demonstrating a paracrine effect. Hypoxia downregulates CAF FBXW7 via ETS proto-oncogene 1 (ETS1) to increase H3K4 methylation, whereas conditioned media from hypoxia-exposed CAFs promotes migration and invasion of pancreatic cancer cells, highlighting FBXW7's tumor-suppressing role through KMT2 inactivation.
Collapse
Affiliation(s)
- Lu Yin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310009, China
| | - Jiagui Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310009, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University 3rd Hospital, Beijing100191, China
| | - Xiaojuan Peng
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Huiyin Lan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310009, China
| | - Alex Ayoub
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Mingjia Tan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI48109
| | - Bo Zhou
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - Yaohui He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Siyuan Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310009, China
| | - Yan Lu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center of Zhejiang University, Hangzhou310029, China
- Department of Gynecologic Oncology, Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Xiufang Xiong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310009, China
| | - Jing Huang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yali Dou
- Department of Medicine, University of Southern California, Los Angeles, CA90033
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA90033
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University 3rd Hospital, Beijing100191, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310009, China
- Cancer Center of Zhejiang University, Hangzhou310029, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou310053, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
2
|
Wolf E, Herasymenko O, Kutera M, Lento C, Arrowsmith C, Ackloo S, Wilson D. Quantitative Hydrogen-Deuterium Exchange Mass Spectrometry for Simultaneous Structural Characterization and Affinity Indexing of Single Target Drug Candidate Libraries. Anal Chem 2024; 96:13015-13024. [PMID: 39074309 PMCID: PMC11326436 DOI: 10.1021/acs.analchem.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Hydrogen-deuterium eXchange mass spectrometry (HDX-MS) is increasingly used in drug development to locate binding sites and to identify allosteric effects in drug/target interactions. However, the potential of this technique to quantitatively analyze drug candidate libraries remains largely unexplored. Here, a collection of 13 WDR5-targeting small molecules with surface plasmon resonance (SPR) dissociation coefficients (KD) ranging from 20 nM to ∼116 μM were characterized using differential HDX-MS (ΔHDX-MS). Conventional qualitative analysis of the ΔHDX-MS data set revealed the binding interfaces for all compounds and allosteric effects where present. We then demonstrated that ΔHDX-MS signal-to-noise (S/N) not only can rank library-relative affinity but also can accurately predict KD from a calibration curve constructed from high-quality SPR data. Three methods for S/N calculation are explored, each suitable for libraries with different characteristics. Our results demonstrate the potential for ΔHDX-MS use in drug candidate library affinity validation and/or determination while simultaneously characterizing structure.
Collapse
Affiliation(s)
- Esther Wolf
- Department
of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | | | - Maria Kutera
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Princess
Margaret Cancer Centre, University Health
Network, Toronto, ON M5G 2M9, Canada
| | - Cristina Lento
- Department
of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Cheryl Arrowsmith
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Princess
Margaret Cancer Centre, University Health
Network, Toronto, ON M5G 2M9, Canada
| | - Suzanne Ackloo
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Derek Wilson
- Department
of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Cho US. The Core Complex of Yeast COMPASS and Human Mixed-Lineage Leukemia (MLL), Structure, Function, and Recognition of the Nucleosome. Subcell Biochem 2024; 104:101-117. [PMID: 38963485 DOI: 10.1007/978-3-031-58843-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Yeast COMPASS (complex of proteins associated with Set1) and human MLL (mixed-lineage leukemia) complexes are histone H3 lysine 4 methyltransferases with critical roles in gene regulation and embryonic development. Both complexes share a conserved C-terminal SET domain, responsible for catalyzing histone H3 K4 methylation on nucleosomes. Notably, their catalytic activity toward nucleosomes is enhanced and optimized with assembly of auxiliary subunits. In this review, we aim to illustrate the recent X-ray and cryo-EM structures of yeast COMPASS and human MLL1 core complexes bound to either unmodified nucleosome core particle (NCP) or H2B mono-ubiquitinated NCP (H2Bub.NCP). We further delineate how each auxiliary component of the complex contributes to the NCP and ubiquitin recognition to maximize the methyltransferase activity.
Collapse
Affiliation(s)
- Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Fields JK, Hicks CW, Wolberger C. Diverse modes of regulating methyltransferase activity by histone ubiquitination. Curr Opin Struct Biol 2023; 82:102649. [PMID: 37429149 PMCID: PMC10527252 DOI: 10.1016/j.sbi.2023.102649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 07/12/2023]
Abstract
Post-translational modification of histones plays a central role in regulating transcription. Methylation of histone H3 at lysines 4 (H3K4) and 79 (H3K79) play roles in activating transcription whereas methylation of H3K27 is a repressive mark. These modifications, in turn, depend upon prior monoubiquitination of specific histone residues in a phenomenon known as histone crosstalk. Earlier work had provided insights into the mechanism by which monoubiquitination histone H2BK120 stimulates H3K4 methylation by COMPASS/MLL1 and H3K79 methylation by DOT1L, and monoubiquitinated H2AK119 stimulates methylation of H3K27 by the PRC2 complex. Recent studies have shed new light on the role of individual subunits and paralogs in regulating the activity of PRC2 and how additional post-translational modifications regulate yeast Dot1 and human DOT1L, as well as provided new insights into the regulation of MLL1 by H2BK120ub.
Collapse
Affiliation(s)
- James K Fields
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Chad W Hicks
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Structural insights on the KMT2-NCP interaction. Biochem Soc Trans 2023; 51:427-434. [PMID: 36695549 DOI: 10.1042/bst20221155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
The MLL/KMT2 family enzymes are frequently mutated in human cancers and congenital diseases. They deposit the majority of histone 3 lysine 4 (H3K4) mono-, di-, or tri-methylation in mammals and are tightly associated with gene activation. Structural and biochemical studies in recent years provide in-depth understanding of how the MLL1 and homologous yeast SET1 complexes interact with the nucleosome core particle (NCP) and how their activities for H3K4 methylation are regulated by the conserved core components. Here, we will discuss the recent single molecule cryo-EM studies on the MLL1 and ySET1 complexes bound on the NCP. These studies highlight the dynamic regulation of the MLL/SET1 family lysine methyltransferases with unique features as compared with other histone lysine methyltransferases. These studies provide insights for loci-specific regulation of H3K4 methylation states in cells. The mechanistic studies on the MLL1 complex have already led to the development of the MLL1 inhibitors that show efficacy in acute leukemia and metastatic breast cancers. Future studies on the MLL/SET1 family enzymes will continue to bring to light potential therapeutic opportunities.
Collapse
|
7
|
Dimitrova YN, Gutierrez JA, Huard K. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. RSC Med Chem 2023; 14:22-46. [PMID: 36760737 PMCID: PMC9890894 DOI: 10.1039/d2md00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An arsenal of molecular tools with increasingly diversified mechanisms of action is being developed by the scientific community to enable biological interrogation and pharmaceutical modulation of targets and pathways of ever increasing complexity. While most small molecules interact with the target of interest in a 1 : 1 relationship, a noteworthy number of recent examples were reported to bind in a sub-stoichiometric manner to a homomeric protein complex. This approach requires molecular understanding of the physiologically relevant protein assemblies and in-depth characterization of the compound's mechanism of action. The recent literature examples summarized here were selected to illustrate methods used to identify and characterize molecules with such mechanisms. The concept of one small molecule targeting a homomeric protein assembly is not new but the subject deserves renewed inspection in light of emerging technologies and increasingly diverse target biology, to ensure relevant in vitro systems are used and valuable compounds with potentially novel sub-stoichiometric mechanisms of action aren't overlooked.
Collapse
Affiliation(s)
| | | | - Kim Huard
- Genentech 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
8
|
Rahman S, Hoffmann NA, Worden EJ, Smith ML, Namitz KEW, Knutson BA, Cosgrove MS, Wolberger C. Multistate structures of the MLL1-WRAD complex bound to H2B-ubiquitinated nucleosome. Proc Natl Acad Sci U S A 2022; 119:e2205691119. [PMID: 36095189 PMCID: PMC9499523 DOI: 10.1073/pnas.2205691119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
The human Mixed Lineage Leukemia-1 (MLL1) complex methylates histone H3K4 to promote transcription and is stimulated by monoubiquitination of histone H2B. Recent structures of the MLL1-WRAD core complex, which comprises the MLL1 methyltransferase, WDR5, RbBp5, Ash2L, and DPY-30, have revealed variability in the docking of MLL1-WRAD on nucleosomes. In addition, portions of the Ash2L structure and the position of DPY30 remain ambiguous. We used an integrated approach combining cryoelectron microscopy (cryo-EM) and mass spectrometry cross-linking to determine a structure of the MLL1-WRAD complex bound to ubiquitinated nucleosomes. The resulting model contains the Ash2L intrinsically disordered region (IDR), SPRY insertion region, Sdc1-DPY30 interacting region (SDI-motif), and the DPY30 dimer. We also resolved three additional states of MLL1-WRAD lacking one or more subunits, which may reflect different steps in the assembly of MLL1-WRAD. The docking of subunits in all four states differs from structures of MLL1-WRAD bound to unmodified nucleosomes, suggesting that H2B-ubiquitin favors assembly of the active complex. Our results provide a more complete picture of MLL1-WRAD and the role of ubiquitin in promoting formation of the active methyltransferase complex.
Collapse
Affiliation(s)
- Sanim Rahman
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Niklas A. Hoffmann
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Evan J. Worden
- Department of Structural Biology, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Marissa L. Smith
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kevin E. W. Namitz
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Michael S. Cosgrove
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|