1
|
Haas R, Lampret O, Yadav S, Apfel UP, Happe T. A Conserved Binding Pocket in HydF is Essential for Biological Assembly and Coordination of the Diiron Site of [FeFe]-Hydrogenases. J Am Chem Soc 2024; 146:15771-15778. [PMID: 38819401 DOI: 10.1021/jacs.4c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The active site cofactor of [FeFe]-hydrogenases consists of a cubane [4Fe-4S]-cluster and a unique [2Fe-2S]-cluster, harboring unusual CO- and CN--ligands. The biosynthesis of the [2Fe-2S]-cluster requires three dedicated maturation enzymes called HydG, HydE and HydF. HydG and HydE are both involved in synthesizing a [2Fe-2S]-precursor, still lacking parts of the azadithiolate (adt) moiety that bridge the two iron atoms. This [2Fe-2S]-precursor is then finalized within the scaffold protein HydF, which binds and transfers the [2Fe-2S]-precursor to the hydrogenase. However, its exact binding mode within HydF is still elusive. Herein, we identified the binding location of the [2Fe-2S]-precursor by altering size and charge of a highly conserved protein pocket via site directed mutagenesis (SDM). Moreover, we identified two serine residues that are essential for binding and assembling the [2Fe-2S]-precursor. By combining SDM and molecular docking simulations, we provide a new model on how the [2Fe-2S]-cluster is bound to HydF and demonstrate the important role of one highly conserved aspartate residue, presumably during the bioassembly of the adt moiety.
Collapse
Affiliation(s)
- Rieke Haas
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Oliver Lampret
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Shanika Yadav
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Ma B, Britt RD, Tao L. Radical SAM Enzyme PylB Generates a Lysyl Radical Intermediate in the Biosynthesis of Pyrrolysine by Using SAM as a Cofactor. J Am Chem Soc 2024; 146:6544-6556. [PMID: 38426740 DOI: 10.1021/jacs.3c11266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pyrrolysine, the 22nd amino acid encoded by the natural genetic code, is essential for methanogenic archaea to catabolize methylamines into methane. The structure of pyrrolysine consists of a methylated pyrroline carboxylate that is linked to the ε-amino group of the l-lysine via an amide bond. The biosynthesis of pyrrolysine requires three enzymes: PylB, PylC, and PylD. PylB is a radical S-adenosyl-l-methionine (SAM) enzyme and catalyzes the first biosynthetic step, the isomerization of l-lysine into methylornithine. PylC catalyzes an ATP-dependent ligation of methylornithine and a second l-lysine to form l-lysine-Nε-methylornithine. The last biosynthetic step is catalyzed by PylD via oxidation of the PylC product to form pyrrolysine. While enzymatic reactions of PylC and PylD have been well characterized by X-ray crystallography and in vitro studies, mechanistic understanding of PylB is still relatively limited. Here, we report the first in vitro activity of PylB to form methylornithine via the isomerization of l-lysine. We also identify a lysyl C4 radical intermediate that is trapped, with its electronic structure and geometric structure well characterized by EPR and ENDOR spectroscopy. In addition, we demonstrate that SAM functions as a catalytic cofactor in PylB catalysis rather than canonically as a cosubstrate. This work provides detailed mechanistic evidence for elucidating the carbon backbone rearrangement reaction catalyzed by PylB during the biosynthesis of pyrrolysine.
Collapse
Affiliation(s)
- Baixu Ma
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lizhi Tao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Villarreal DG, Rao G, Tao L, Liu L, Rauchfuss TB, Britt RD. Characterizing the Biosynthesis of the [Fe(II)(CN)(CO) 2(cysteinate)] - Organometallic Product of the Radical-SAM Enzyme HydG by EPR and Mössbauer Spectroscopy. J Phys Chem B 2023; 127:9295-9302. [PMID: 37861415 DOI: 10.1021/acs.jpcb.3c05495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
[FeFe]-hydrogenases employ a catalytic H-cluster, consisting of a [4Fe-4S]H cluster linked to a [2Fe]H subcluster with CO, CN- ligands, and an azadithiolate bridge, which mediates the rapid redox interconversion of H+ and H2. In the biosynthesis of this H-cluster active site, the radical S-adenosyl-l-methionine (radical SAM, RS) enzyme HydG plays the crucial role of generating an organometallic [Fe(II)(CN)(CO)2(cysteinate)]- product that is en route to forming the H-cluster. Here, we report direct observation of this diamagnetic organometallic Fe(II) complex through Mössbauer spectroscopy, revealing an isomer shift of δ = 0.10 mm s-1 and quadrupole splitting of ΔEQ = 0.66 mm s-1. These Mössbauer values are a change from the starting values of δ = 1.15 mm s-1 and ΔEQ = 3.23 mm s-1 for the ferrous "dangler" Fe in HydG. These values of the observed product complex B are in good agreement with Mössbauer parameters for the low-spin Fe2+ ions in synthetic analogues, such as 57Fe Syn-B, which we report here. These results highlight the essential role that HydG plays in converting a resting-state high-spin Fe(II) to a low-spin organometallic Fe(II) product that can be transferred to the downstream maturase enzymes.
Collapse
Affiliation(s)
- David G Villarreal
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Guodong Rao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Lizhi Tao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Liang Liu
- School of Chemical Sciences, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - R David Britt
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
4
|
Wiechers H, Kehl A, Hiller M, Eltzner B, Huckemann SF, Meyer A, Tkach I, Bennati M, Pokern Y. Bayesian optimization to estimate hyperfine couplings from 19F ENDOR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107491. [PMID: 37301045 DOI: 10.1016/j.jmr.2023.107491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
ENDOR spectroscopy is a fundamental method to detect nuclear spins in the vicinity of paramagnetic centers and their mutual hyperfine interaction. Recently, site-selective introduction of 19F as nuclear labels has been proposed as a tool for ENDOR-based distance determination in biomolecules, complementing pulsed dipolar spectroscopy in the range of angstrom to nanometer. Nevertheless, one main challenge of ENDOR still consists of its spectral analysis, which is aggravated by a large parameter space and broad resonances from hyperfine interactions. Additionally, at high EPR frequencies and fields (⩾94 GHz/3.4 Tesla), chemical shift anisotropy might contribute to broadening and asymmetry in the spectra. Here, we use two nitroxide-fluorine model systems to examine a statistical approach to finding the best parameter fit to experimental 263 GHz 19F ENDOR spectra. We propose Bayesian optimization for a rapid, global parameter search with little prior knowledge, followed by a refinement by more standard gradient-based fitting procedures. Indeed, the latter suffer from finding local rather than global minima of a suitably defined loss function. Using a new and accelerated simulation procedure, results for the semi-rigid nitroxide-fluorine two and three spin systems lead to physically reasonable solutions, if minima of similar loss can be distinguished by DFT predictions. The approach also delivers the stochastic error of the obtained parameter estimates. Future developments and perspectives are discussed.
Collapse
Affiliation(s)
- H Wiechers
- Felix-Bernstein-Institute for Mathematical Statistics in the Biosciences, Georgia-Augusta-University, Goldschmidtstr. 7, D-37077 Göttingen, Germany
| | - A Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - M Hiller
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - B Eltzner
- Research Group Computational Biomolecular Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - S F Huckemann
- Felix-Bernstein-Institute for Mathematical Statistics in the Biosciences, Georgia-Augusta-University, Goldschmidtstr. 7, D-37077 Göttingen, Germany
| | - A Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany; Institute of Physical Chemistry, Georgia-Augusta-University, Tammanstr. 6, D-37077 Göttingen, Germany
| | - I Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - M Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany; Institute of Physical Chemistry, Georgia-Augusta-University, Tammanstr. 6, D-37077 Göttingen, Germany.
| | - Y Pokern
- Department of Statistical Science, University College London, WC1E 6BT, United Kingdom.
| |
Collapse
|
5
|
Sidabras JW, Stripp ST. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 2023; 28:355-378. [PMID: 36856864 DOI: 10.1007/s00775-023-01992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.
Collapse
Affiliation(s)
- Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA, 53226.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
6
|
Oh L, Ji Y, Li W, Varki A, Chen X, Wang LP. O-Acetyl Migration within the Sialic Acid Side Chain: A Mechanistic Study Using the Ab Initio Nanoreactor. Biochemistry 2022; 61:2007-2013. [PMID: 36054099 DOI: 10.1021/acs.biochem.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many disease-causing viruses target sialic acids on the surface of host cells. Some viruses bind preferentially to sialic acids with O-acetyl modification at the hydroxyl group of C7, C8, or C9 on the glycerol-like side chain. Studies of proteins binding to sialosides containing O-acetylated sialic acids are crucial in understanding the related diseases but experimentally difficult due to the lability of the ester group. We recently showed that O-acetyl migration among hydroxyl groups of C7, C8, and C9 in sialic acids occurs in all directions in a pH-dependent manner. In the current study, we elucidate a full mechanistic pathway for the migration of O-acetyl among C7, C8, and C9. We used an ab initio nanoreactor to explore potential reaction pathways and density functional theory, pKa calculations, and umbrella sampling to investigate elementary steps of interest. We found that when a base is present, migration is easy in any direction and involves three key steps: deprotonation of the hydroxyl group, cyclization between the two carbons, and the migration of the O-acetyl group. This dynamic equilibrium may play a defensive role against pathogens that evolve to gain entry to the cell by binding selectively to one acetylation state.
Collapse
Affiliation(s)
- Lisa Oh
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yang Ji
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Wanqing Li
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
7
|
Amara P, Saragaglia C, Mouesca JM, Martin L, Nicolet Y. L-tyrosine-bound ThiH structure reveals C-C bond break differences within radical SAM aromatic amino acid lyases. Nat Commun 2022; 13:2284. [PMID: 35477710 PMCID: PMC9046217 DOI: 10.1038/s41467-022-29980-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
2-iminoacetate synthase ThiH is a radical S-adenosyl-L-methionine (SAM) L-tyrosine lyase and catalyzes the L-tyrosine Cα-Cβ bond break to produce dehydroglycine and p-cresol while the radical SAM L-tryptophan lyase NosL cleaves the L-tryptophan Cα-C bond to produce 3-methylindole-2-carboxylic acid. It has been difficult to understand the features that condition one C-C bond break over the other one because the two enzymes display significant primary structure similarities and presumably similar substrate-binding modes. Here, we report the crystal structure of L-tyrosine bound ThiH from Thermosinus carboxydivorans revealing an unusual protonation state of L-tyrosine upon binding. Structural comparison of ThiH with NosL and computational studies of the respective reactions they catalyze show that substrate activation is eased by tunneling effect and that subtle structural changes between the two enzymes affect, in particular, the hydrogen-atom abstraction by the 5´-deoxyadenosyl radical species, driving the difference in reaction specificity.
Collapse
Affiliation(s)
- Patricia Amara
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000, Grenoble, France
| | - Claire Saragaglia
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000, Grenoble, France
| | - Jean-Marie Mouesca
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-DIESE-SyMMES-CAMPE, 38000, Grenoble, France
| | - Lydie Martin
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000, Grenoble, France
| | - Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000, Grenoble, France.
| |
Collapse
|