1
|
Fell CW, Schmitt-Ulms C, Tagliaferri DV, Gootenberg JS, Abudayyeh OO. Precise kilobase-scale genomic insertions in mammalian cells using PASTE. Nat Protoc 2024:10.1038/s41596-024-01090-z. [PMID: 39676077 DOI: 10.1038/s41596-024-01090-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 10/08/2024] [Indexed: 12/17/2024]
Abstract
Programmable gene integration technologies are an emerging modality with exciting applications in both basic research and therapeutic development. Programmable addition via site-specific targeting elements (PASTE) is a programmable gene integration approach for precise and efficient programmable integration of large DNA sequences into the genome. PASTE offers improved editing efficiency, purity and programmability compared with previous methods for long insertions into the mammalian genome. By combining the specificity and cargo size capabilities of site-specific integrases with the programmability of prime editing, PASTE can precisely insert cargoes of at least 36 kb with efficiencies of up to 60%. Here we outline best practices for design, execution and analysis of PASTE experiments, with protocols for integration of EGFP at the human NOLC1 and ACTB genomic loci and for readout by next generation sequencing and droplet digital PCR. We provide guidelines for designing and optimizing a custom PASTE experiment for integration of desired payloads at alternative genomic loci, as well as example applications for in-frame protein tagging and multiplexed insertions. To facilitate experimental setup, we include the necessary sequences and plasmids for the delivery of PASTE components to cells via plasmid transfection or in vitro transcribed RNA. Most experiments in this protocol can be performed in as little as 2 weeks, allowing for precise and versatile programmable gene insertion.
Collapse
Affiliation(s)
- Christopher W Fell
- Harvard Medical School, Harvard University, Boston, MA, USA
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Cian Schmitt-Ulms
- Harvard Medical School, Harvard University, Boston, MA, USA
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dario V Tagliaferri
- Harvard Medical School, Harvard University, Boston, MA, USA
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jonathan S Gootenberg
- Harvard Medical School, Harvard University, Boston, MA, USA.
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Omar O Abudayyeh
- Harvard Medical School, Harvard University, Boston, MA, USA.
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Chang CW, Truong VA, Pham NN, Hu YC. RNA-guided genome engineering: paradigm shift towards transposons. Trends Biotechnol 2024; 42:970-985. [PMID: 38443218 DOI: 10.1016/j.tibtech.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
CRISPR-Cas systems revolutionized the genome engineering field but need to induce double-strand breaks (DSBs) and may be difficult to deliver due to their large protein size. Tn7-like transposons such as CRISPR-associated transposons (CASTs) can be repurposed for RNA-guided DSB-free integration, and obligate mobile element guided activity (OMEGA) proteins of the IS200/IS605 transposon family have been developed as hypercompact RNA-guided genome editing tools. CASTs and OMEGA are exciting, innovative genome engineering tools that can improve the precision and efficiency of editing. This review explores the recent developments and uses of CASTs and OMEGA in genome editing across prokaryotic and eukaryotic cells. The pros and cons of these transposon-based systems are deliberated in comparison to other CRISPR systems.
Collapse
Affiliation(s)
- Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Vy Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
3
|
Durrant MG, Perry NT, Pai JJ, Jangid AR, Athukoralage JS, Hiraizumi M, McSpedon JP, Pawluk A, Nishimasu H, Konermann S, Hsu PD. Bridge RNAs direct programmable recombination of target and donor DNA. Nature 2024; 630:984-993. [PMID: 38926615 PMCID: PMC11208160 DOI: 10.1038/s41586-024-07552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/09/2024] [Indexed: 06/28/2024]
Abstract
Genomic rearrangements, encompassing mutational changes in the genome such as insertions, deletions or inversions, are essential for genetic diversity. These rearrangements are typically orchestrated by enzymes that are involved in fundamental DNA repair processes, such as homologous recombination, or in the transposition of foreign genetic material by viruses and mobile genetic elements1,2. Here we report that IS110 insertion sequences, a family of minimal and autonomous mobile genetic elements, express a structured non-coding RNA that binds specifically to their encoded recombinase. This bridge RNA contains two internal loops encoding nucleotide stretches that base-pair with the target DNA and the donor DNA, which is the IS110 element itself. We demonstrate that the target-binding and donor-binding loops can be independently reprogrammed to direct sequence-specific recombination between two DNA molecules. This modularity enables the insertion of DNA into genomic target sites, as well as programmable DNA excision and inversion. The IS110 bridge recombination system expands the diversity of nucleic-acid-guided systems beyond CRISPR and RNA interference, offering a unified mechanism for the three fundamental DNA rearrangements-insertion, excision and inversion-that are required for genome design.
Collapse
Affiliation(s)
- Matthew G Durrant
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T Perry
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | | | - Aditya R Jangid
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Masahiro Hiraizumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | | | | | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Inamori Research Institute for Science, Kyoto, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Saitama, Japan
| | - Silvana Konermann
- Arc Institute, Palo Alto, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Leclerc D, Siroky MD, Miller SM. Next-generation biological vector platforms for in vivo delivery of genome editing agents. Curr Opin Biotechnol 2024; 85:103040. [PMID: 38103518 DOI: 10.1016/j.copbio.2023.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
CRISPR-based genome editing holds promise for addressing genetic disease, infectious disease, and cancer and has rapidly advanced from primary research to clinical trials in recent years. However, the lack of safe and potent in vivo delivery methods for CRISPR components has limited most ongoing clinical trials to ex vivo gene therapy. Effective CRISPR in vivo genome editing necessitates an effective vehicle ensuring target cell transduction while minimizing off-target effects, toxicity, and immune reactions. In this review, we examine promising biological-derived platforms to deliver DNA editing agents in vivo and the engineering thereof, encompassing potent viral-based vehicles, flexible protein nanocages, and mammalian-derived particles.
Collapse
Affiliation(s)
- Delphine Leclerc
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael D Siroky
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shannon M Miller
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Durrant MG, Perry NT, Pai JJ, Jangid AR, Athukoralage JS, Hiraizumi M, McSpedon JP, Pawluk A, Nishimasu H, Konermann S, Hsu PD. Bridge RNAs direct modular and programmable recombination of target and donor DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577089. [PMID: 38328150 PMCID: PMC10849738 DOI: 10.1101/2024.01.24.577089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Genomic rearrangements, encompassing mutational changes in the genome such as insertions, deletions, or inversions, are essential for genetic diversity. These rearrangements are typically orchestrated by enzymes involved in fundamental DNA repair processes such as homologous recombination or in the transposition of foreign genetic material by viruses and mobile genetic elements (MGEs). We report that IS110 insertion sequences, a family of minimal and autonomous MGEs, express a structured non-coding RNA that binds specifically to their encoded recombinase. This bridge RNA contains two internal loops encoding nucleotide stretches that base-pair with the target DNA and donor DNA, which is the IS110 element itself. We demonstrate that the target-binding and donor-binding loops can be independently reprogrammed to direct sequence-specific recombination between two DNA molecules. This modularity enables DNA insertion into genomic target sites as well as programmable DNA excision and inversion. The IS110 bridge system expands the diversity of nucleic acid-guided systems beyond CRISPR and RNA interference, offering a unified mechanism for the three fundamental DNA rearrangements required for genome design.
Collapse
Affiliation(s)
- Matthew G. Durrant
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T. Perry
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - James J. Pai
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
| | - Aditya R. Jangid
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Masahiro Hiraizumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | - April Pawluk
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto 600-8411, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Silvana Konermann
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick D. Hsu
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Affiliation(s)
- George D Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Pervasive donor DNA integration defies precision gene editing of hematopoietic stem cells. Cell Stem Cell 2022; 29:1426-1427. [DOI: 10.1016/j.stem.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|