1
|
Hay Mele B, Monticelli M, Leone S, Bastoni D, Barosa B, Cascone M, Migliaccio F, Montemagno F, Ricciardelli A, Tonietti L, Rotundi A, Cordone A, Giovannelli D. Oxidoreductases and metal cofactors in the functioning of the earth. Essays Biochem 2023; 67:653-670. [PMID: 37503682 PMCID: PMC10423856 DOI: 10.1042/ebc20230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Life sustains itself using energy generated by thermodynamic disequilibria, commonly existing as redox disequilibria. Metals are significant players in controlling redox reactions, as they are essential components of the engine that life uses to tap into the thermodynamic disequilibria necessary for metabolism. The number of proteins that evolved to catalyze redox reactions is extraordinary, as is the diversification level of metal cofactors and catalytic domain structures involved. Notwithstanding the importance of the topic, the relationship between metals and the redox reactions they are involved in has been poorly explored. This work reviews the structure and function of different prokaryotic organometallic-protein complexes, highlighting their pivotal role in controlling biogeochemistry. We focus on a specific subset of metal-containing oxidoreductases (EC1 or EC7.1), which are directly involved in biogeochemical cycles, i.e., at least one substrate or product is a small inorganic molecule that is or can be exchanged with the environment. Based on these inclusion criteria, we select and report 59 metalloenzymes, describing the organometallic structure of their active sites, the redox reactions in which they are involved, and their biogeochemical roles.
Collapse
Affiliation(s)
- Bruno Hay Mele
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Monticelli
- Department of Biology, University of Naples Federico II, Naples, Italy
- National Research Council - Institute of Biomolecular Chemistry - CNR-ICB, Pozzuoli, Italy
| | - Serena Leone
- Dipartimento di Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton. Dohrn, Napoli, Italy
| | - Deborah Bastoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bernardo Barosa
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Martina Cascone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Flavia Migliaccio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Luca Tonietti
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Alessandra Rotundi
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Angelina Cordone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR-IRBIM, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, U.S.A
- Marine Chemistry and Geochemistry Department - Woods Hole Oceanographic Institution, MA, U.S.A
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
2
|
Stamos NA, Ferentinos E, Chrysina M, Raptopoulou CP, Psycharis V, Sanakis Y, Pantazis DA, Kyritsis P, Mitrikas G. Unusual 31P Hyperfine Strain Effects in a Conformationally Flexible Cu(II) Complex Revealed by Two-Dimensional Pulse EPR Spectroscopy. Inorg Chem 2020; 59:3666-3676. [PMID: 32077279 DOI: 10.1021/acs.inorgchem.9b03237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strain effects on g and metal hyperfine coupling tensors, A, are often manifested in Electron Paramagnetic Resonance (EPR) spectra of transition metal complexes, as a result of their intrinsic and/or solvent-mediated structural variations. Although distributions of these tensors are quite common and well understood in continuous-wave (cw) EPR spectroscopy, reported strain effects on ligand hyperfine coupling constants are rather scarce. Here we explore the case of a conformationally flexible Cu(II) complex, [Cu{Ph2P(O)NP(O)Ph2-κ2O,O'}2], bearing P atoms in its second coordination sphere and exhibiting two structurally distinct CuO4 coordination spheres, namely a square planar and a tetrahedrally distorted one, as revealed by X-ray crystallography. The Hyperfine Sublevel Correlation (HYSCORE) spectra of this complex exhibit 31P correlation ridges that have unusual inverse or so-called "boomerang" shapes and features that cannot be reproduced by standard simulation procedures assuming only one set of magnetic parameters. Our work shows that a distribution of isotropic hyperfine coupling constants (hfc) spanning a range between negative and positive values is necessary in order to describe in detail the unusual shapes of HYSCORE spectra. By employing DFT calculations we show that these hfc correspond to molecules showing variable distortions from square planar to tetrahedral geometry, and we demonstrate that line shape analysis of such HYSCORE spectra provides new insight into the conformation-dependent spectroscopic response of the spin system under investigation.
Collapse
Affiliation(s)
- Nikolaos-Angelos Stamos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Athens, Greece.,Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Maria Chrysina
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Athens, Greece
| | | | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Athens, Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Athens, Greece
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - George Mitrikas
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Athens, Greece
| |
Collapse
|
3
|
Structure of the cytochrome aa 3 -600 heme-copper menaquinol oxidase bound to inhibitor HQNO shows TM0 is part of the quinol binding site. Proc Natl Acad Sci U S A 2019; 117:872-876. [PMID: 31888984 DOI: 10.1073/pnas.1915013117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Virtually all proton-pumping terminal respiratory oxygen reductases are members of the heme-copper oxidoreductase superfamily. Most of these enzymes use reduced cytochrome c as a source of electrons, but a group of enzymes have evolved to directly oxidize membrane-bound quinols, usually menaquinol or ubiquinol. All of the quinol oxidases have an additional transmembrane helix (TM0) in subunit I that is not present in the related cytochrome c oxidases. The current work reports the 3.6-Å-resolution X-ray structure of the cytochrome aa 3 -600 menaquinol oxidase from Bacillus subtilis containing 1 equivalent of menaquinone. The structure shows that TM0 forms part of a cleft to accommodate the menaquinol-7 substrate. Crystals which have been soaked with the quinol-analog inhibitor HQNO (N-oxo-2-heptyl-4-hydroxyquinoline) or 3-iodo-HQNO reveal a single binding site where the inhibitor forms hydrogen bonds to amino acid residues shown previously by spectroscopic methods to interact with the semiquinone state of menaquinone, a catalytic intermediate.
Collapse
|
4
|
Ding Z, Sun C, Yi SM, Gennis RB, Dikanov SA. The Ubiquinol Binding Site of Cytochrome bo3 from Escherichia coli Accommodates Menaquinone and Stabilizes a Functional Menasemiquinone. Biochemistry 2019; 58:4559-4569. [PMID: 31644263 DOI: 10.1021/acs.biochem.9b00750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome bo3, one of three terminal oxygen reductases in the aerobic respiratory chain of Escherichia coli, has been well characterized as a ubiquinol oxidase. The ability of cytochrome bo3 to catalyze the two-electron oxidation of ubiquinol-8 requires the enzyme to stabilize the one-electron oxidized ubisemiquinone species that is a transient intermediate in the reaction. Cytochrome bo3 has been shown recently to also utilize demethylmenaquinol-8 as a substrate that, along with menaquinol-8, replaces ubiquinol-8 when E. coli is grown under microaerobic or anaerobic conditions. In this work, we show that its steady-state turnover with 2,3-dimethyl-1,4-naphthoquinol, a water-soluble menaquinol analogue, is just as efficient as with ubiquinol-1. Using pulsed electron paramagnetic resonance spectroscopy, we demonstrate that the same residues in cytochrome bo3 that stabilize the semiquinone state of ubiquinone also stabilize the semiquinone state of menaquinone, with the hydrogen bond strengths and the distribution of unpaired spin density accommodated for the different substrate. Catalytic function with menaquinol is more tolerant of mutations at the active site than with ubiquinol. A mutation of one of the stabilizing residues (R71H in subunit I) that eliminates the ubiquinol oxidase activity of cytochrome bo3 does not abolish activity with soluble menaquinol analogues.
Collapse
Affiliation(s)
- Ziqiao Ding
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Chang Sun
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Sophia M Yi
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Robert B Gennis
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Computational Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Sergei A Dikanov
- Department of Veterinary Clinical Medicine , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
5
|
Taguchi AT, Evans ED, Dikanov SA, Griffin RG. Convolutional Neural Network Analysis of Two-Dimensional Hyperfine Sublevel Correlation Electron Paramagnetic Resonance Spectra. J Phys Chem Lett 2019; 10:1115-1119. [PMID: 30789745 PMCID: PMC8300483 DOI: 10.1021/acs.jpclett.8b03797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A machine learning approach is presented for analyzing complex two-dimensional hyperfine sublevel correlation electron paramagnetic resonance (HYSCORE EPR) spectra with the proficiency of an expert spectroscopist. The computer vision algorithm requires no training on experimental data; rather, all of the spin physics required to interpret the spectra are learned from simulations alone. This approach is therefore applicable even when insufficient experimental data exist to train the algorithm. The neural network is demonstrated to be capable of utilizing the full information content of two-dimensional 14N HYSCORE spectra to predict the magnetic coupling parameters and their underlying probability distributions that were previously inaccessible. The predicted hyperfine ( a, T) and 14N quadrupole ( K, η) coupling constants deviate from the previous manual analyses of the experimental spectra on average by 0.11 MHz, 0.09 MHz, 0.19 MHz, and 0.09, respectively.
Collapse
Affiliation(s)
- Alexander T. Taguchi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ethan D. Evans
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sergei A. Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Dikanov SA, Taguchi AT. Two-Dimensional Pulsed EPR Resolves Hyperfine Coupling Strain in Nitrogen Hydrogen Bond Donors of Semiquinone Intermediates. J Phys Chem B 2018; 122:5205-5211. [DOI: 10.1021/acs.jpcb.8b02511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Alexander T. Taguchi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|