1
|
Liu J, Hufnagel RB. PNPLA6 disorders: what's in a name? Ophthalmic Genet 2023; 44:530-538. [PMID: 37732399 PMCID: PMC10840751 DOI: 10.1080/13816810.2023.2254830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Variants in the patatin-like phospholipase domain containing 6 (PNPLA6) gene cause a broad spectrum of neurological disorders characterized by gait disturbance, visual impairment, anterior hypopituitarism, and hair anomalies. This review examines the clinical, cellular, and biochemical features found across the five PNPLA6-related diseases, with a focus on future questions to be addressed. MATERIALS AND METHODS A literature review was performed on published clinical reports on patients with PNPLA6 variants. Additionally, in vitro and in vivo models used to study the encoded protein, Neuropathy Target Esterase (NTE), are summarized to lend mechanistic perspective to human diseases. RESULTS Biallelic pathogenic PNPLA6 variants cause five systemic neurological disorders: spastic paraplegia type 39, Gordon-Holmes, Boucher-Neuhäuser, Laurence-Moon, and Oliver-McFarlane syndromes. PNPLA6 encodes NTE, an enzyme involved in maintaining phospholipid homeostasis and trafficking in the nervous system. Retinal disease presents with a unique chorioretinal dystrophy that is phenotypically similar to choroideremia and Leber congenital amaurosis. Animal and cellular models support a loss-of-function mechanism. CONCLUSIONS Clinicians should be aware of choroideremia-like ocular presentation in patients who also experience growth defects, motor dysfunction, and/or hair anomalies. Although NTE biochemistry is well characterized, further research on the relationship between genotype and the presence or absence of retinopathy should be explored to improve diagnosis and prognosis.
Collapse
Affiliation(s)
- James Liu
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Huang FF, Chang PA, Sun LX, Qin WZ, Han LP, Chen R. The destruction box is involved in the degradation of the NTE family proteins by the proteasome. Mol Biol Rep 2016; 43:1285-1292. [PMID: 27558092 DOI: 10.1007/s11033-016-4063-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/16/2016] [Indexed: 01/16/2023]
Abstract
Neuropathy target esterase (NTE) and NTE-related esterase (NRE) are endoplasmic reticulum (ER) membrane-anchored proteins belonging to the NTE protein family. NTE and NRE are degraded by macroautophagy and by the ubiquitin-proteasome pathway. However, the regulation of NTE and NRE by proteasome has not been well understood. Western blotting showed that the deletion of the regulatory region of NTE and NRE led to protein accumulation compared with that of the corresponding wild-type proteins. Further, deletion and site-directed mutagenesis experiments demonstrated that the destruction (D) box was required for the proteasomal degradation of NTE and NRE. However, unlike the deletion of the regulatory region, the deletion of the D box did not affect the subcellular localisation of NTE or NRE or disrupt the ER. Moreover, the deletion of the D box or the regulatory region of NTE has similar inhibitory effects on cell growth, which are greater than those produced by the full-length NTE. Here, for the first time, we show that the D box is involved in the regulation of NTE family proteins by the proteasome but not in their subcellular localisation. In addition, these results suggest that the NTE overexpression-mediated inhibition of cell growth is related to active protein levels but not to its ER disruption effect.
Collapse
Affiliation(s)
- Fei-Fei Huang
- Key Laboratory of Molecular Biology, College of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Ping-An Chang
- Key Laboratory of Molecular Biology, College of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China.
| | - Lan-Xi Sun
- Key Laboratory of Molecular Biology, College of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Wen-Zhen Qin
- Key Laboratory of Molecular Biology, College of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Li-Ping Han
- Key Laboratory of Molecular Biology, College of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Rui Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| |
Collapse
|
3
|
Wang Q, Zhou Q, Zhang S, Shao W, Yin Y, Li Y, Hou J, Zhang X, Guo Y, Wang X, Gu X, Zhou J. Elevated Hapln2 Expression Contributes to Protein Aggregation and Neurodegeneration in an Animal Model of Parkinson's Disease. Front Aging Neurosci 2016; 8:197. [PMID: 27601993 PMCID: PMC4993759 DOI: 10.3389/fnagi.2016.00197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023] Open
Abstract
Parkinson's disease (PD), the second most common age-associated progressive neurodegenerative disorder, is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SN). The pathogenesis of PD and the mechanisms underlying the degeneration of DA neurons are still not fully understood. Our previous quantitative proteomics study revealed that hyaluronan and proteoglycan binding link protein 2 (Hapln2) is one of differentially expressed proteins in the substantia nigra tissues from PD patients and healthy control subjects. However, the potential role of Hapln2 in PD pathogenesis remains elusive. In the present study, we characterized the expression pattern of Hapln2. In situ hybridization revealed that Hapln2 mRNA was widely expressed in adult rat brain with high abundance in the substantia nigra. Immunoblotting showed that expression levels of Hapln2 were markedly upregulated in the substantia nigra of either human subjects with Parkinson's disease compared with healthy control. Likewise, there were profound increases in Hapln2 expression in neurotoxin 6-hydroxydopamine-treated rat. Overexpression of Hapln2 in vitro increased vulnerability of MES23.5 cells, a dopaminergic cell line, to 6-hydroxydopamine. Moreover, Hapln2 overexpression led to the formation of cytoplasmic aggregates which were co-localized with ubiquitin and E3 ligases including Parkin, Gp78, and Hrd1 in vitro. Endogenous α-synuclein was also localized in Hapln2-containing aggregates and ablation of Hapln2 led to a marked decrease of α-synuclein in insoluble fraction compared with control. Thus, Hapln2 is identified as a novel factor contributing to neurodegeneration in PD. Our data provides new insights into the cellular mechanism underlying the pathogenesis in PD.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; University of Chinese Academy of SciencesShanghai, China
| | - Qinbo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Shuzhen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Wei Shao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yanqing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yandong Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Jincan Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Xinhua Zhang
- Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University Nantong, China
| | - Yongshun Guo
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders Beijing, China
| | - Xiaomin Wang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders Beijing, China
| | - Xiaosong Gu
- Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University Nantong, China
| | - Jiawei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|