1
|
Bardwell AJ, Paul M, Yoneda KC, Andrade-Ludeña MD, Nguyen OT, Fruman DA, Bardwell L. The WW domain of IQGAP1 binds directly to the p110α catalytic subunit of PI 3-kinase. Biochem J 2023; 480:BCJ20220493. [PMID: 37145016 PMCID: PMC10625650 DOI: 10.1042/bcj20220493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/06/2023]
Abstract
IQGAP1 is a multi-domain cancer-associated protein that serves as a scaffold protein for multiple signaling pathways. Numerous binding partners have been found for the calponin homology, IQ and GAP-related domains in IQGAP1. Identification of a binding partner for its WW domain has proven elusive, however, even though a cell-penetrating peptide derived from this domain has marked anti-tumor activity. Here, using in vitro binding assays with human proteins and co-precipitation from human cells, we show that the WW domain of human IQGAP1 binds directly to the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K). In contrast, the WW domain does not bind to ERK1/2, MEK1/2, or the p85α regulatory subunit of PI3K when p85α is expressed alone. However, the WW domain is able to bind to the p110α/p85α heterodimer when both subunits are co-expressed, as well as to the mutationally activated p110α/p65α heterodimer. We present a model of the structure of the IQGAP1 WW domain, and experimentally identify key residues in the hydrophobic core and beta strands of the WW domain that are required for binding to p110α. These findings contribute to a more precise understanding of IQGAP1-mediated scaffolding, and of how IQGAP1-derived therapeutic peptides might inhibit tumorigenesis.
Collapse
Affiliation(s)
- A. Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - Madhuri Paul
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Kiku C. Yoneda
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | | | - Oanh T. Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| |
Collapse
|
2
|
Castillo F, Corbi-Verge C, Murciano-Calles J, Candel AM, Han Z, Iglesias-Bexiga M, Ruiz-Sanz J, Kim PM, Harty RN, Martinez JC, Luque I. Phage display identification of nanomolar ligands for human NEDD4-WW3: Energetic and dynamic implications for the development of broad-spectrum antivirals. Int J Biol Macromol 2022; 207:308-323. [PMID: 35257734 DOI: 10.1016/j.ijbiomac.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
The recognition of PPxY viral Late domains by the third WW domain of the human HECT-E3 ubiquitin ligase NEDD4 (NEDD4-WW3) is essential for the budding of many viruses. Blocking these interactions is a promising strategy to develop broad-spectrum antivirals. As all WW domains, NEDD4-WW3 is a challenging therapeutic target due to the low binding affinity of its natural interactions, its high conformational plasticity, and its complex thermodynamic behavior. In this work, we set out to investigate whether high affinity can be achieved for monovalent ligands binding to the isolated NEDD4-WW3 domain. We show that a competitive phage-display set-up allows for the identification of high-affinity peptides showing inhibitory activity of viral budding. A detailed biophysical study combining calorimetry, nuclear magnetic resonance, and molecular dynamic simulations reveals that the improvement in binding affinity does not arise from the establishment of new interactions with the domain, but is associated to conformational restrictions imposed by a novel C-terminal -LFP motif in the ligand, unprecedented in the PPxY interactome. These results, which highlight the complexity of WW domain interactions, provide valuable insight into the key elements for high binding affinity, of interest to guide virtual screening campaigns for the identification of novel therapeutics targeting NEDD4-WW3 interactions.
Collapse
Affiliation(s)
- Francisco Castillo
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Carles Corbi-Verge
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain; Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics & Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Javier Murciano-Calles
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Adela M Candel
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | - Manuel Iglesias-Bexiga
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics & Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | - Jose C Martinez
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| |
Collapse
|
3
|
Potjewyd FM, Axtman AD. Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Front Cell Neurosci 2021; 15:768655. [PMID: 34867205 PMCID: PMC8637409 DOI: 10.3389/fncel.2021.768655] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) is responsible for the degradation of misfolded or aggregated proteins via a multistep ATP-dependent proteolytic mechanism. This process involves a cascade of ubiquitin (Ub) transfer steps from E1 to E2 to E3 ligase. The E3 ligase transfers Ub to a targeted protein that is brought to the proteasome for degradation. The inability of the UPS to remove misfolded or aggregated proteins due to UPS dysfunction is commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD). UPS dysfunction in AD drives disease pathology and is associated with the common hallmarks such as amyloid-β (Aβ) accumulation and tau hyperphosphorylation, among others. E3 ligases are key members of the UPS machinery and dysfunction or changes in their expression can propagate other aberrant processes that accelerate AD pathology. The upregulation or downregulation of expression or activity of E3 ligases responsible for these processes results in changes in protein levels of E3 ligase substrates, many of which represent key proteins that propagate AD. A powerful way to better characterize UPS dysfunction in AD and the role of individual E3 ligases is via the use of high-quality chemical tools that bind and modulate specific E3 ligases. Furthermore, through combining gene editing with recent advances in 3D cell culture, in vitro modeling of AD in a dish has become more relevant and possible. These cell-based models of AD allow for study of specific pathways and mechanisms as well as characterization of the role E3 ligases play in driving AD. In this review, we outline the key mechanisms of UPS dysregulation linked to E3 ligases in AD and highlight the currently available chemical modulators. We present several key approaches for E3 ligase ligand discovery being employed with respect to distinct classes of E3 ligases. Where possible, specific examples of the use of cultured neurons to delineate E3 ligase biology have been captured. Finally, utilizing the available ligands for E3 ligases in the design of proteolysis targeting chimeras (PROTACs) to degrade aberrant proteins is a novel strategy for AD, and we explore the prospects of PROTACs as AD therapeutics.
Collapse
|
4
|
Predicting PY motif-mediated protein-protein interactions in the Nedd4 family of ubiquitin ligases. PLoS One 2021; 16:e0258315. [PMID: 34637467 PMCID: PMC8509885 DOI: 10.1371/journal.pone.0258315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023] Open
Abstract
The Nedd4 family contains several structurally related but functionally distinct HECT-type ubiquitin ligases. The members of the Nedd4 family are known to recognize substrates through their multiple WW domains, which recognize PY motifs (PPxY, LPxY) or phospho-threonine or phospho-serine residues. To better understand protein interactor recognition mechanisms across the Nedd4 family, we report the development and implementation of a python-based tool, PxYFinder, to identify PY motifs in the primary sequences of previously identified interactors of Nedd4 and related ligases. Using PxYFinder, we find that, on average, half of Nedd4 family interactions are likely PY-motif mediated. Further, we find that PPxY motifs are more prevalent than LPxY motifs and are more likely to occur in proline-rich regions and that PPxY regions are more disordered on average relative to LPxY-containing regions. Informed by consensus sequences for PY motifs across the Nedd4 interactome, we rationally designed a focused peptide library and employed a computational screen, revealing sequence- and biomolecular interaction-dependent determinants of WW-domain/PY-motif interactions. Cumulatively, our efforts provide a new bioinformatic tool and expand our understanding of sequence and structural factors that contribute to PY-motif mediated interactor recognition across the Nedd4 family.
Collapse
|
5
|
Rheinemann L, Thompson T, Mercenne G, Paine EL, Peterson FC, Volkman BF, Alam SL, Alian A, Sundquist WI. Interactions between AMOT PPxY motifs and NEDD4L WW domains function in HIV-1 release. J Biol Chem 2021; 297:100975. [PMID: 34284061 PMCID: PMC8368996 DOI: 10.1016/j.jbc.2021.100975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
Like most enveloped viruses, HIV must acquire a lipid membrane as it assembles and buds through the plasma membrane of infected cells to spread infection. Several sets of host cell machinery facilitate this process, including proteins of the endosomal sorting complexes required for transport pathway, which mediates the membrane fission reaction required to complete viral budding, as well as angiomotin (AMOT) and NEDD4L, which bind one another and promote virion membrane envelopment. AMOT and NEDD4L interact through the four NEDD4L WW domains and three different AMOT Pro-Pro-x (any amino acid)-Tyr (PPxY) motifs, but these interactions are not yet well defined. Here, we report that individual AMOT PPxY and NEDD4L WW domains interact with the following general affinity hierarchies: AMOT PPxY1>PPxY2>PPxY3 and NEDD4L WW3>WW2>WW1∼WW4. The unusually high-affinity of the AMOT PPxY1–NEDD4L WW3 interaction accounts for most of the AMOT–NEDD4L binding and is critical for stimulating HIV-1 release. Comparative structural, binding, and virological analyses reveal that complementary ionic and hydrophobic contacts on both sides of the WW–PPxY core interaction account for the unusually high affinity of the AMOT PPxY1–NEDD4L WW3 interaction. Taken together, our studies reveal how the first AMOT PPxY1 motif binds the third NEDD4L WW domain to stimulate HIV-1 viral envelopment and promote infectivity.
Collapse
Affiliation(s)
- Lara Rheinemann
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Tuscan Thompson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Gaelle Mercenne
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Elliott L Paine
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Steven L Alam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | - Akram Alian
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
6
|
Nishimura A, Tanahashi R, Takagi H. The yeast α-arrestin Art3 is a key regulator for arginine-induced endocytosis of the high-affinity proline transporter Put4. Biochem Biophys Res Commun 2020; 531:416-421. [DOI: 10.1016/j.bbrc.2020.07.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
|
7
|
Binding site plasticity in viral PPxY Late domain recognition by the third WW domain of human NEDD4. Sci Rep 2019; 9:15076. [PMID: 31636332 PMCID: PMC6803667 DOI: 10.1038/s41598-019-50701-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022] Open
Abstract
The recognition of PPxY viral Late domains by the third WW domain of the HECT-E3 ubiquitin ligase NEDD4 (hNEDD4-WW3) is essential for the completion of the budding process of numerous enveloped viruses, including Ebola, Marburg, HTLV1 or Rabies. hNEDD4-WW3 has been validated as a promising target for the development of novel host-oriented broad spectrum antivirals. Nonetheless, finding inhibitors with good properties as therapeutic agents remains a challenge since the key determinants of binding affinity and specificity are still poorly understood. We present here a detailed structural and thermodynamic study of the interactions of hNEDD4-WW3 with viral Late domains combining isothermal titration calorimetry, NMR structural determination and molecular dynamics simulations. Structural and energetic differences in Late domain recognition reveal a highly plastic hNEDD4-WW3 binding site that can accommodate PPxY-containing ligands with varying orientations. These orientations are mostly determined by specific conformations adopted by residues I859 and T866. Our results suggest a conformational selection mechanism, extensive to other WW domains, and highlight the functional relevance of hNEDD4-WW3 domain conformational flexibility at the binding interface, which emerges as a key element to consider in the search for potent and selective inhibitors of therapeutic interest.
Collapse
|
8
|
Lin X, Yang H, Wang L, Li W, Diao S, Du J, Wang S, Dong R, Li J, Fan Z. AP2a enhanced the osteogenic differentiation of mesenchymal stem cells by inhibiting the formation of YAP/RUNX2 complex and BARX1 transcription. Cell Prolif 2019; 52:e12522. [PMID: 30443989 PMCID: PMC6430486 DOI: 10.1111/cpr.12522] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Bone regeneration by bone tissue engineering is a therapeutic option for bone defects. Improving the osteogenic differentiation of mesenchymal stem cells (MSCs) is essential for successful bone regeneration. We previously showed that AP2a enhances the osteogenic differentiation in MSCs. The present study investigated the mechanism of how AP2a regulates the direct differentiation. MATERIALS AND METHODS Co-immunoprecipitation and ChIP assays were carried out to investigate the underlying mechanism in MSCs differentiation. The osteogenic differentiation potential was determined by mineralization ability and the expression of osteogenic marker in vitro and the in vivo bone-like tissue generation in nude mice. RESULTS We show that AP2a can compete with RUNX2, a key transcription factor in osteogenic differentiation, to recruit YAP and release the inhibition of RUNX2 activity from YAP by forming YAP-AP2a protein complex. YAP-AP2a protein complex also interacts with the BARX1 promoter through AP2a, inhibit the transcription of BARX1. Moreover, BARX1 inhibits osteogenic differentiation of MSCs. CONCLUSIONS Our discoveries revealed that AP2a may regulate the osteogenic differentiation in an indirect way through competing with RUNX2 to relieve the RUNX2 activity which inhibited by YAP, and also in a direct way via targeting the BARX1 and directly repressed its transcription. Thus, our discoveries shed new light on the mechanism of direct differentiation of MSCs and provide candidate targets for improving the osteogenic differentiation and enhancing bone tissue regeneration.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral TissuesCapital Medical University School of StomatologyBeijingChina
- Department of Implant DentistryCapital Medical University School of StomatologyBeijingChina
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral TissuesCapital Medical University School of StomatologyBeijingChina
| | - Lijun Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral TissuesCapital Medical University School of StomatologyBeijingChina
- Department of EndodonticsCapital Medical University School of StomatologyBeijingChina
| | - Wenzhi Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral TissuesCapital Medical University School of StomatologyBeijingChina
- Department of EndodonticsCapital Medical University School of StomatologyBeijingChina
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral TissuesCapital Medical University School of StomatologyBeijingChina
- Department of PediatricsCapital Medical University School of StomatologyBeijingChina
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral TissuesCapital Medical University School of StomatologyBeijingChina
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral TissuesCapital Medical University School of StomatologyBeijingChina
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral TissuesCapital Medical University School of StomatologyBeijingChina
- Department of Biochemistry and Molecular BiologyCapital Medical University School of Basic Medical SciencesBeijingChina
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral TissuesCapital Medical University School of StomatologyBeijingChina
| | - Jun Li
- Department of Implant DentistryCapital Medical University School of StomatologyBeijingChina
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral TissuesCapital Medical University School of StomatologyBeijingChina
| |
Collapse
|
9
|
Lin X, Yang H, Wang L, Li W, Diao S, Du J, Wang S, Dong R, Li J, Fan Z. AP2a enhanced the osteogenic differentiation of mesenchymal stem cells by inhibiting the formation of YAP/RUNX2 complex and BARX1 transcription. Cell Prolif 2019; 52. [DOI: 14.doi: 10.1111/cpr.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/27/2018] [Indexed: 05/19/2025] Open
Abstract
AbstractObjectivesBone regeneration by bone tissue engineering is a therapeutic option for bone defects. Improving the osteogenic differentiation of mesenchymal stem cells (MSCs) is essential for successful bone regeneration. We previously showed that AP2a enhances the osteogenic differentiation in MSCs. The present study investigated the mechanism of how AP2a regulates the direct differentiation.Materials and methodsCo‐immunoprecipitation and ChIP assays were carried out to investigate the underlying mechanism in MSCs differentiation. The osteogenic differentiation potential was determined by mineralization ability and the expression of osteogenic marker in vitro and the in vivo bone‐like tissue generation in nude mice.ResultsWe show that AP2a can compete with RUNX2, a key transcription factor in osteogenic differentiation, to recruit YAP and release the inhibition of RUNX2 activity from YAP by forming YAP‐AP2a protein complex. YAP‐AP2a protein complex also interacts with the BARX1 promoter through AP2a, inhibit the transcription of BARX1. Moreover, BARX1 inhibits osteogenic differentiation of MSCs.ConclusionsOur discoveries revealed that AP2a may regulate the osteogenic differentiation in an indirect way through competing with RUNX2 to relieve the RUNX2 activity which inhibited by YAP, and also in a direct way via targeting the BARX1 and directly repressed its transcription. Thus, our discoveries shed new light on the mechanism of direct differentiation of MSCs and provide candidate targets for improving the osteogenic differentiation and enhancing bone tissue regeneration.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues Capital Medical University School of Stomatology Beijing China
- Department of Implant Dentistry Capital Medical University School of Stomatology Beijing China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues Capital Medical University School of Stomatology Beijing China
| | - Lijun Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues Capital Medical University School of Stomatology Beijing China
- Department of Endodontics Capital Medical University School of Stomatology Beijing China
| | - Wenzhi Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues Capital Medical University School of Stomatology Beijing China
- Department of Endodontics Capital Medical University School of Stomatology Beijing China
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues Capital Medical University School of Stomatology Beijing China
- Department of Pediatrics Capital Medical University School of Stomatology Beijing China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues Capital Medical University School of Stomatology Beijing China
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues Capital Medical University School of Stomatology Beijing China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues Capital Medical University School of Stomatology Beijing China
- Department of Biochemistry and Molecular Biology Capital Medical University School of Basic Medical Sciences Beijing China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues Capital Medical University School of Stomatology Beijing China
| | - Jun Li
- Department of Implant Dentistry Capital Medical University School of Stomatology Beijing China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues Capital Medical University School of Stomatology Beijing China
| |
Collapse
|
10
|
Iglesias-Bexiga M, Szczepaniak M, Sánchez de Medina C, Cobos ES, Godoy-Ruiz R, Martinez JC, Muñoz V, Luque I. Protein Folding Cooperativity and Thermodynamic Barriers of the Simplest β-Sheet Fold: A Survey of WW Domains. J Phys Chem B 2018; 122:11058-11071. [PMID: 29985628 DOI: 10.1021/acs.jpcb.8b05198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Theory and experiments have shown that microsecond folding proteins exhibit characteristic thermodynamic properties that reflect the limited cooperativity of folding over marginal barriers (downhill folding). Those studies have mostly focused on proteins with large α-helical contents and small size, which tend to be the fastest folders. A key open question is whether such properties are also present in the fastest all-β proteins. We address this issue by investigating the unfolding thermodynamics of a collection of WW domains as representatives of the simplest β-sheet fold. WW domains are small microsecond folders, although they do not fold as fast as their α-helical counterparts. In previous work on the NEDD4-WW4 domain, we reported deviations from two-state thermodynamics that were less apparent and thus suggestive of an incipient downhill scenario. Here we investigate the unfolding thermodynamics of four other WW domains (NEDD4-WW3, YAP65-WW1(L30K), FBP11-WW1, and FBP11-WW2) by performing all of the thermodynamic tests for downhill folding that have been previously developed on α-helical proteins. This set of five WW domains shares low sequence identity and include examples from two specificity classes, thus providing a comprehensive survey. Thermodynamic analysis of the four new WW domains consistently reveals all of the properties of downhill folding equilibria, which are in all cases more marked than what we found before in NEDD4-WW4. Our results show that fast-folding all-β proteins do share limited cooperativity and gradual unfolding thermodynamics with fast α-helical proteins and suggest that the free energy barrier to folding of natural proteins is mostly determined by size and fold topology and much less by the specific amino acid sequence.
Collapse
Affiliation(s)
- Manuel Iglesias-Bexiga
- Department of Physical Chemistry and Institute of Biotechnology , University of Granada , Granada 18010 , Spain
| | - Malwina Szczepaniak
- Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC) , Darwin 3 , 28049 Madrid , Spain
| | - Celia Sánchez de Medina
- Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC) , Darwin 3 , 28049 Madrid , Spain
| | - Eva S Cobos
- Department of Physical Chemistry and Institute of Biotechnology , University of Granada , Granada 18010 , Spain
| | - Raquel Godoy-Ruiz
- Department of Chemistry & Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Jose C Martinez
- Department of Physical Chemistry and Institute of Biotechnology , University of Granada , Granada 18010 , Spain
| | - Victor Muñoz
- Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC) , Darwin 3 , 28049 Madrid , Spain.,Department of Bioengineering , University of California Merced , Merced , California 95343 , United States
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology , University of Granada , Granada 18010 , Spain
| |
Collapse
|
11
|
Knox R, Lento C, Wilson DJ. Mapping Conformational Dynamics to Individual Steps in the TEM-1 β-Lactamase Catalytic Mechanism. J Mol Biol 2018; 430:3311-3322. [PMID: 29964048 DOI: 10.1016/j.jmb.2018.06.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Conformational dynamics are increasingly recognized as being essential for enzyme function. However, there is virtually no direct experimental evidence to support the notion that individual dynamic modes are required for specific catalytic processes, apart from the initial step of substrate binding. In this work, we use a unique approach based on millisecond hydrogen-deuterium exchange mass spectrometry to identify dynamic modes linked to individual catalytic processes in the antibiotic resistance enzyme TEM-1 β-lactamase. Using a "good" substrate (ampicillin), a poorly hydrolyzed substrate (cephalexin) and a covalent inhibitor (clavulanate), we are able to isolate dynamic modes that are specifically linked to substrate binding, productive lactam ring hydrolysis and deacylation. These discoveries are ultimately translated into specific targets for allosteric TEM-1 inhibitor development.
Collapse
Affiliation(s)
- Ruth Knox
- Department of Chemistry, York University, Toronto, Canada M3J 1P3
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Canada M3J 1P3
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Canada M3J 1P3; Center for Research in Mass Spectrometry, York University, Toronto, Canada M3J 1P3.
| |
Collapse
|
12
|
Moosa MM, Ferreon JC, Ferreon ACM. Ligand interactions and the protein order-disorder energetic continuum. Semin Cell Dev Biol 2018; 99:78-85. [PMID: 29753880 DOI: 10.1016/j.semcdb.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/05/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins as computationally predicted account for ∼1/3 of eukaryotic proteomes, are involved in a plethora of biological functions, and have been linked to several human diseases as a result of their dysfunctions. Here, we present a picture wherein an energetic continuum describes protein structural and conformational propensities, ranging from the hyperstable folded proteins on one end to the hyperdestabilized and sometimes functionally disordered proteins on the other. We distinguish between proteins that are folding-competent but disordered because of marginal stability and those that are disordered due mainly to the absence of folding code-completing structure-determining interactions, and postulate that disordered proteins that are unstructured by way of partial population of protein denatured states represent a sizable proportion of the proteome.
Collapse
Affiliation(s)
- Mahdi Muhammad Moosa
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Josephine C Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| | - Allan Chris M Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
13
|
Schulte M, Panwalkar V, Freischem S, Willbold D, Dingley AJ. Proline Restricts Loop I Conformation of the High Affinity WW Domain from Human Nedd4-1 to a Ligand Binding-Competent Type I β-Turn. J Phys Chem B 2018; 122:4219-4230. [PMID: 29595969 DOI: 10.1021/acs.jpcb.7b11637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequence alignment of the four WW domains from human Nedd4-1 (neuronal precursor cell expressed developmentally down-regulated gene 4-1) reveals that the highest sequence diversity exists in loop I. Three residues in this type I β-turn interact with the PPxY motif of the human epithelial Na+ channel (hENaC) subunits, indicating that peptide affinity is defined by the loop I sequence. The third WW domain (WW3*) has the highest ligand affinity and unlike the other three hNedd4-1 WW domains or other WW domains studied contains the highly statistically preferred proline at the ( i + 1) position found in β-turns. In this report, molecular dynamics simulations and experimental data were combined to characterize loop I stability and dynamics. Exchange of the proline to the equivalent residue in WW4 (Thr) results in the presence of a predominantly open seven residue Ω loop rather than the type I β-turn conformation for the wild-type apo-WW3*. In the presence of the ligand, the structure of the mutated loop I is locked into a type I β-turn. Thus, proline in loop I ensures a stable peptide binding-competent β-turn conformation, indicating that amino acid sequence modulates local flexibility to tune binding preferences and stability of dynamic interaction motifs.
Collapse
Affiliation(s)
- Marianne Schulte
- ICS-6 (Strukturbiochemie) , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40225 Düsseldorf , Germany
| | - Vineet Panwalkar
- ICS-6 (Strukturbiochemie) , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40225 Düsseldorf , Germany
| | - Stefan Freischem
- ICS-6 (Strukturbiochemie) , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40225 Düsseldorf , Germany
| | - Dieter Willbold
- ICS-6 (Strukturbiochemie) , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40225 Düsseldorf , Germany
| | - Andrew J Dingley
- ICS-6 (Strukturbiochemie) , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40225 Düsseldorf , Germany
| |
Collapse
|
14
|
Lorenz S. Structural mechanisms of HECT-type ubiquitin ligases. Biol Chem 2018; 399:127-145. [PMID: 29016349 DOI: 10.1515/hsz-2017-0184] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
Ubiquitin ligases (E3 enzymes) transfer ubiquitin from ubiquitin-conjugating (E2) enzymes to target proteins. By determining the selection of target proteins, modification sites on those target proteins, and the types of ubiquitin modifications that are formed, E3 enzymes are key specificity factors in ubiquitin signaling. Here, I summarize our knowledge of the structural mechanisms in the HECT E3 subfamily, many members of which play important roles in human disease. I discuss interactions of the conserved HECT domain with E2 enzymes, ubiquitin and target proteins, as well as macromolecular interactions with regulatory functions. While we understand individual steps in the catalytic cycle of HECT E3 enzymes on a structural level, this review also highlights key aspects that have yet to be elucidated. For instance, it remains unclear how diverse target proteins are presented to the catalytic center and how certain HECT E3 enzymes achieve specificity in ubiquitin linkage formation. The structural and functional properties of the N-terminal regions of HECT E3 enzymes that likely act as signaling hubs are also largely unknown. Structural insights into these aspects may open up routes for a therapeutic intervention with specific HECT E3 functions in distinct pathophysiological settings.
Collapse
Affiliation(s)
- Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| |
Collapse
|
15
|
Hausrath AC, Kingston RL. Conditionally disordered proteins: bringing the environment back into the fold. Cell Mol Life Sci 2017; 74:3149-3162. [PMID: 28597298 PMCID: PMC11107710 DOI: 10.1007/s00018-017-2558-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
For many proteins, biological function requires the folding of the polypeptide chain into a unique and persistent tertiary structure. This review concerns proteins that adopt a specific tertiary structure to function, but are otherwise partially or completely disordered. The biological cue for protein folding is environmental perturbation or minor post-translational modification. Hence, we term these proteins conditionally disordered. Many of these proteins recognize and bind other molecules, and conditional disorder has been hypothesized to allow for more nuanced control and regulation of binding processes. However, this remains largely unproven. The sequences of conditionally disordered proteins suggest their propensity to fold; yet, under the standard laboratory conditions, they do not do so, which may appear surprising. We argue that the surprise results from the failure to consider the role of the environment in protein structure formation and that conditional disorder arises as a natural consequence of the marginal stability of the folded state.
Collapse
Affiliation(s)
- Andrew C Hausrath
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand.
| |
Collapse
|
16
|
An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun 2017; 8:347. [PMID: 28839186 PMCID: PMC5570908 DOI: 10.1038/s41467-017-00299-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
The ubiquitination mediated by ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2), and ubiquitin ligase (E3) cascade is crucial to protein degradation, transcription regulation, and cell signaling in eukaryotic cells. The high specificity of ubiquitination is regulated by the interaction between E3 ubiquitin ligases and their target substrates. Unfortunately, the landscape of human E3-substrate network has not been systematically uncovered. Therefore, there is an urgent need to develop a high-throughput and efficient strategy to identify the E3-substrate interaction. To address this challenge, we develop a computational model based on multiple types of heterogeneous biological evidence to investigate the human E3-substrate interactions. Furthermore, we provide UbiBrowser as an integrated bioinformatics platform to predict and present the proteome-wide human E3-substrate interaction network ( http://ubibrowser.ncpsb.org ).Protein stability modulation by E3 ubiquitin ligases is an important layer of functional regulation, but screening for E3 ligase-substrate interactions is time-consuming and costly. Here, the authors take an in silico naïve Bayesian classifier approach to integrate multiple lines of evidence for E3-substrate prediction, enabling prediction of the proteome-wide human E3 ligase interaction network.
Collapse
|
17
|
Panwalkar V, Neudecker P, Willbold D, Dingley AJ. Multiple WW domains of Nedd4-1 undergo conformational exchange that is quenched upon peptide binding. FEBS Lett 2017; 591:1573-1583. [DOI: 10.1002/1873-3468.12664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Vineet Panwalkar
- ICS-6 (Strukturbiochemie); Forschungszentrum Jülich; Germany
- Institut für Physikalische Biologie; Heinrich-Heine-Universität; Düsseldorf Germany
| | - Philipp Neudecker
- ICS-6 (Strukturbiochemie); Forschungszentrum Jülich; Germany
- Institut für Physikalische Biologie; Heinrich-Heine-Universität; Düsseldorf Germany
| | - Dieter Willbold
- ICS-6 (Strukturbiochemie); Forschungszentrum Jülich; Germany
- Institut für Physikalische Biologie; Heinrich-Heine-Universität; Düsseldorf Germany
| | - Andrew J. Dingley
- ICS-6 (Strukturbiochemie); Forschungszentrum Jülich; Germany
- Institut für Physikalische Biologie; Heinrich-Heine-Universität; Düsseldorf Germany
| |
Collapse
|
18
|
Anderson JM, Jurban B, Huggins KNL, Shcherbakov AA, Shu I, Kier B, Andersen NH. Nascent Hairpins in Proteins: Identifying Turn Loci and Quantitating Turn Contributions to Hairpin Stability. Biochemistry 2016; 55:5537-5553. [DOI: 10.1021/acs.biochem.6b00732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jordan M. Anderson
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| | - Brice Jurban
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| | - Kelly N. L. Huggins
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| | | | - Irene Shu
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| | - Brandon Kier
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| | - Niels H. Andersen
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
19
|
Panwalkar V, Schulte M, Lecher J, Stoldt M, Willbold D, Dingley AJ. Data describing the solution structure of the WW3* domain from human Nedd4-1. Data Brief 2016; 8:605-12. [PMID: 27419198 PMCID: PMC4936499 DOI: 10.1016/j.dib.2016.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 12/05/2022] Open
Abstract
The third WW domain (WW3*) of human Nedd4-1 (Neuronal precursor cell expressed developmentally down-regulated gene 4-1) interacts with the poly-proline (PY) motifs of the human epithelial Na+ channel (hENaC) subunits at micromolar affinity. This data supplements the article (Panwalkar et al., 2015) [1]. We describe the NMR experiments used to solve the solution structure of the WW3* domain. We also present NOE network data for defining the rotameric state of side chains of peptide binding residues, and complement this data with χ1 dihedral angles derived from 3J couplings and molecular dynamics simulations data.
Collapse
Affiliation(s)
- Vineet Panwalkar
- ICS-6 Strukturbiochemie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marianne Schulte
- ICS-6 Strukturbiochemie, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Justin Lecher
- ICS-6 Strukturbiochemie, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Matthias Stoldt
- ICS-6 Strukturbiochemie, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- ICS-6 Strukturbiochemie, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Andrew J Dingley
- ICS-6 Strukturbiochemie, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|