1
|
Bak-Gordon P, Manley JL. SF3B1: from core splicing factor to oncogenic driver. RNA (NEW YORK, N.Y.) 2025; 31:314-332. [PMID: 39773890 PMCID: PMC11874996 DOI: 10.1261/rna.080368.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Highly recurrent somatic mutations in the gene encoding the core splicing factor SF3B1 are drivers of multiple cancer types. SF3B1 is a scaffold protein that orchestrates multivalent protein-protein interactions within the spliceosome that are essential for recognizing the branchsite (BS) and selecting the 3' splice site during the earliest stage of pre-mRNA splicing. In this review, we first describe the molecular mechanism by which multiple oncogenic SF3B1 mutations disrupt splicing. This involves perturbation of an early spliceosomal trimeric protein complex necessary for accurate BS recognition in a subset of introns, which leads to activation of upstream branchpoints and selection of cryptic 3' splice sites. We next discuss how specific transcripts affected by aberrant splicing in SF3B1-mutant cells contribute to the initiation and progression of cancer. Finally, we highlight the prognostic value and disease phenotypes of different cancer-associated SF3B1 mutations, which is critical for developing new targeted therapeutics against SF3B1-mutant cancers still lacking in the clinic.
Collapse
Affiliation(s)
- Pedro Bak-Gordon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
2
|
Li J, Tong H, Li D, Jiang Q, Zhang Y, Tang W, Jin D, Chen S, Qin X, Zhang S, Xue R. The long non-coding RNA DKFZp434J0226 regulates the alternative splicing process through phosphorylation of SF3B6 in PDAC. Mol Med 2021; 27:95. [PMID: 34470609 PMCID: PMC8411526 DOI: 10.1186/s10020-021-00347-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs), a type of pervasive genes that regulates various biological processes, are differentially expressed in different types of malignant tumors. The role of lncRNAs in the carcinogenesis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, we investigated the role of the lncRNA DKFZp434J0226 in PDAC. METHODS Aberrantly expressed mRNAs and lncRNAs among six PDAC and paired non-tumorous tissues were profiled using microarray analysis. Quantitative real-time polymerase chain reaction was used to evaluate DKFZp434J0226 expression in PDAC tissues. CCK-8 assay, wound-healing assay, soft agar colony formation assay, and transwell assay were performed to assess the invasiveness and proliferation of PDAC cells. Furthermore, RNA pull-down, immunofluorescence, RNA immunoprecipitation, and western blotting assays were performed to investigate the association between DKFZp434J0226 and SF3B6. Tumor xenografts in mice were used to test for tumor formation in vivo. RESULTS In our study, 222 mRNAs and 128 lncRNAs were aberrantly expressed (≥ twofold change). Of these, 66 mRNAs and 53 lncRNAs were upregulated, while 75 lncRNAs and 156 mRNAs were downregulated. KEGG pathway analysis and the Gene ontology category indicated that these genes were associated with the regulation of mRNA alternative splicing and metabolic balance. Clinical analyses revealed that overexpression of DKFZp434J0226 was associated with worse tumor grading, frequent perineural invasion, advanced tumor-node-metastasis stage, and decreased overall survival and time to progression. Functional assays demonstrated that DKFZp434J0226 promoted PDAC cell migration, invasion, and growth in vitro and accelerated tumor proliferation in vivo. Mechanistically, DKFZp434J0226 interacted with the splicing factor SF3B6 and promoted its phosphorylation, which further regulated the alternative splicing of pre-mRNA. CONCLUSIONS This study indicates that DKFZp434J0226 regulates alternative splicing through phosphorylation of SF3B6 in PDAC and leads to an oncogenic phenotype in PDAC.
Collapse
Affiliation(s)
- Jinglei Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Dongping Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Qiuyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 130 DongAn Road, Shanghai, 200032, China
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, 200032, China.
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 130 DongAn Road, Shanghai, 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, 180 FengLin Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Yazhini A, Sandhya S, Srinivasan N. Rewards of divergence in sequences, 3-D structures and dynamics of yeast and human spliceosome SF3b complexes. Curr Res Struct Biol 2021; 3:133-145. [PMID: 35028595 PMCID: PMC8714771 DOI: 10.1016/j.crstbi.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
The evolution of homologous and functionally equivalent multiprotein assemblies is intriguing considering sequence divergence of constituent proteins. Here, we studied the implications of protein sequence divergence on the structure, dynamics and function of homologous yeast and human SF3b spliceosomal subcomplexes. Human and yeast SF3b comprise of 7 and 6 proteins respectively, with all yeast proteins homologous to their human counterparts at moderate sequence identity. SF3b6, an additional component in the human SF3b, interacts with the N-terminal extension of SF3b1 while the yeast homologue Hsh155 lacks the equivalent region. Through detailed homology studies, we show that SF3b6 is absent not only in yeast but in multiple lineages of eukaryotes implying that it is critical in specific organisms. We probed for the potential role of SF3b6 in the spliceosome assembled form through structural and flexibility analyses. By analysing normal modes derived from anisotropic network models of SF3b1, we demonstrate that when SF3b1 is bound to SF3b6, similarities in the magnitude of residue motions (0.86) and inter-residue correlated motions (0.94) with Hsh155 are significantly higher than when SF3b1 is considered in isolation (0.21 and 0.89 respectively). We observed that SF3b6 promotes functionally relevant 'open-to-close' transition in SF3b1 by enhancing concerted residue motions. Such motions are found to occur in the Hsh155 without SF3b6. The presence of SF3b6 influences motions of 16 residues that interact with U2 snRNA/branchpoint duplex and supports the participation of its interface residues in long-range communication in the SF3b1. These results advocate that SF3b6 potentially acts as an allosteric regulator of SF3b1 for BPS selection and might play a role in alternative splicing. Furthermore, we observe variability in the relative orientation of SF3b4 and in the local structure of three β-propeller domains of SF3b3 with reference to their yeast counterparts. Such differences influence the inter-protein interactions of SF3b between these two organisms. Together, our findings highlight features of SF3b evolution and suggests that the human SF3b may have evolved sophisticated mechanisms to fine tune its molecular function.
Collapse
Key Words
- Allostery
- BPS, branch-point sequence
- Bact, activated B spliceosome assembly
- Cryo-EM structure
- Cryo-EM, cryo-electron microscopy
- DOPE, discrete optimized protein energy
- NMA, normal mode analysis
- PDB, protein data bank
- Protein dynamics
- RMSD, root mean square deviation
- RRM, RNA recognition motif
- SF3b complex
- SF3b1
- SF3b1SF3b6−bound, SF3b1 bound to SF3b6
- SF3b1iso, SF3b1 in isolation
- SIP, square inner product
- Spliceosome
Collapse
Affiliation(s)
- Arangasamy Yazhini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | | |
Collapse
|
4
|
Perea W, Greenbaum NL. Label-free horizontal EMSA for analysis of protein-RNA interactions. Anal Biochem 2020; 599:113736. [PMID: 32304696 DOI: 10.1016/j.ab.2020.113736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 11/25/2022]
Abstract
We describe a method to analyze the affinity and specificity of interactions between proteins and RNA using horizontal PAGE under non-denaturing conditions. The method permits tracking of migration of anionic and cationic biomolecules and complexes toward anode and cathode, respectively, therefore enabling quantification of bound and free biomolecules of different charges and affinity of their intermolecular interactions. The gel is stained with a fluorescent intercalating dye (SYBR®Gold or ethidium bromide) for visualization of nucleic acids followed by Coomassie® Brilliant Blue R-250 for visualizations of proteins; the dissociation constant is determined separately from the intensity of unshifted and shifted bands visualized by each dye. The method permits calculation of bound and unbound anionic nucleic acid and cationic protein components in the same gel, regardless of charge, under identical conditions, and avoids the need for radioisotope or fluorescent labeling of either component.
Collapse
Affiliation(s)
- William Perea
- Department of Chemistry, Hunter College of the City University of New York, 695 Park Ave, New York, NY, 10065, USA
| | - Nancy L Greenbaum
- Department of Chemistry, Hunter College of the City University of New York, 695 Park Ave, New York, NY, 10065, USA; Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Zhang J, Ali AM, Lieu YK, Liu Z, Gao J, Rabadan R, Raza A, Mukherjee S, Manley JL. Disease-Causing Mutations in SF3B1 Alter Splicing by Disrupting Interaction with SUGP1. Mol Cell 2019; 76:82-95.e7. [PMID: 31474574 PMCID: PMC7065273 DOI: 10.1016/j.molcel.2019.07.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022]
Abstract
SF3B1, which encodes an essential spliceosomal protein, is frequently mutated in myelodysplastic syndromes (MDS) and many cancers. However, the defect of mutant SF3B1 is unknown. Here, we analyzed RNA sequencing data from MDS patients and confirmed that SF3B1 mutants use aberrant 3' splice sites. To elucidate the underlying mechanism, we purified complexes containing either wild-type or the hotspot K700E mutant SF3B1 and found that levels of a poorly studied spliceosomal protein, SUGP1, were reduced in mutant spliceosomes. Strikingly, SUGP1 knockdown completely recapitulated the splicing errors, whereas SUGP1 overexpression drove the protein, which our data suggest plays an important role in branchsite recognition, into the mutant spliceosome and partially rescued splicing. Other hotspot SF3B1 mutants showed similar altered splicing and diminished interaction with SUGP1. Our study demonstrates that SUGP1 loss is a common defect of spliceosomes with disease-causing SF3B1 mutations and, because this defect can be rescued, suggests possibilities for therapeutic intervention.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Abdullah M Ali
- Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Yen K Lieu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Zhaoqi Liu
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Jianchao Gao
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Azra Raza
- Irving Cancer Research Center, Columbia University, New York, NY 10032, USA; Division of Hematology/Oncology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Siddhartha Mukherjee
- Irving Cancer Research Center, Columbia University, New York, NY 10032, USA; Division of Hematology/Oncology, Department of Medicine, Columbia University, New York, NY 10032, USA.
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|