1
|
Nakagawa S, Kurokawa M, Kambara O, Takei T, Daidoji K, Naito A, Takita M, Kawamoto A, Hirose M, Tamura A. Structural Analyses of Designed α-Helix and β-Sheet Peptide Nanofibers Using Solid-State Nuclear Magnetic Resonance and Cryo-Electron Microscopy and Introduction of Structure-Based Metal-Responsive Properties. Int J Mol Sci 2024; 25:1111. [PMID: 38256184 PMCID: PMC10816960 DOI: 10.3390/ijms25021111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The 21-residue peptide α3, which is artificially designed and consists of three repeats of 7 residues, is known to rapidly assemble into the α-helix nanofiber. However, its molecular structure within the fiber has not yet been fully elucidated. Thus, we conducted a thorough investigation of the fiber's molecular structure using solid-state NMR and other techniques. The molecules were found to be primarily composed of the α-helix structure, with some regions near the C- and N-terminal adopting a 310-helix structure. Furthermore, it was discovered that β-sheet hydrogen bonds were formed between the molecules at both ends. These intermolecular interactions caused the molecules to assemble parallelly in the same direction, forming helical fibers. In contrast, we designed two molecules, CaRP2 and βKE, that can form β-sheet intermolecular hydrogen bonds using the entire molecule instead of just the ends. Cryo-EM and other measurements confirmed that the nanofibers formed in a cross β structure, albeit at a slow rate, with the formation times ranging from 1 to 42 days. To create peptide nanofibers that instantaneously respond to changes in the external environment, we designed several molecules (HDM1-3) based on α3 by introducing metal-binding sites. One of these molecules was found to be highly responsive to the addition of metal ions, inducing α-helix formation and simultaneously assembling into nanofibers. The nanofibers lost their structure upon removal of the metal ion. The change occurred promptly and was reversible, demonstrating that the intended level of responsiveness was attained.
Collapse
Affiliation(s)
- Shota Nakagawa
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| | - Minami Kurokawa
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| | - Ohki Kambara
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| | - Toshiaki Takei
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| | - Kengo Daidoji
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan (A.N.)
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan (A.N.)
| | - Mao Takita
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan; (A.K.); (M.H.)
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan; (A.K.); (M.H.)
| | - Atsuo Tamura
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| |
Collapse
|
2
|
Nikolova V, Kircheva N, Dobrev S, Angelova S, Dudev T. Lanthanides as Calcium Mimetic Species in Calcium-Signaling/Buffering Proteins: The Effect of Lanthanide Type on the Ca2+/Ln3+ Competition. Int J Mol Sci 2023; 24:ijms24076297. [PMID: 37047269 PMCID: PMC10094714 DOI: 10.3390/ijms24076297] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Lanthanides, the 14 4f-block elements plus Lanthanum, have been extensively used to study the structure and biochemical properties of metalloproteins. The characteristics of lanthanides within the lanthanide series are similar, but not identical. The present research offers a systematic investigation of the ability of the entire Ln3+ series to substitute for Ca2+ in biological systems. A well-calibrated DFT/PCM protocol is employed in studying the factors that control the metal selectivity in biological systems by modeling typical calcium signaling/buffering binding sites and elucidating the thermodynamic outcome of the competition between the “alien” La3+/Ln3+ and “native” Ca2+, and La3+ − Ln3+ within the lanthanide series. The calculations performed reveal that the major determinant of the Ca2+/Ln3+ selectivity in calcium proteins is the net charge of the calcium binding pocket; the more negative the charge, the higher the competitiveness of the trivalent Ln3+ with respect to its Ca2+ contender. Solvent exposure of the binding site also influences the process; buried active centers with net charge of −4 or −3 are characterized by higher Ln3+ over Ca2+ selectivity, whereas it is the opposite for sites with overall charge of −1. Within the series, the competition between La3+ and its fellow lanthanides is determined by the balance between two competing effects: electronic (favoring heavier lanthanides) and solvation (generally favoring the lighter lanthanides).
Collapse
Affiliation(s)
- Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
3
|
Marino V, Riva M, Zamboni D, Koch KW, Dell'Orco D. Bringing the Ca 2+ sensitivity of myristoylated recoverin into the physiological range. Open Biol 2021; 11:200346. [PMID: 33401992 PMCID: PMC7881174 DOI: 10.1098/rsob.200346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prototypical Ca2+-sensor protein recoverin (Rec) is thought to regulate the activity of rhodopsin kinase (GRK1) in photoreceptors by switching from a relaxed (R) disc membrane-bound conformation in the dark to a more compact, cytosol-diffusing tense (T) conformation upon cell illumination. However, the apparent affinity for Ca2+ of its physiologically relevant form (myristoylated recoverin) is almost two orders of magnitude too low to support this mechanism in vivo. In this work, we compared the individual and synergistic roles of the myristic moiety, the GRK1 target and the disc membrane in modulating the calcium sensitivity of Rec. We show that the sole presence of the target or the disc membrane alone are not sufficient to achieve a physiological response to changes in intracellular [Ca2+]. Instead, the simultaneous presence of GRK1 and membrane allows the T to R transition to occur in a physiological range of [Ca2+] with high cooperativity via a conformational selection mechanism that drives the structural transitions of Rec in the presence of multiple ligands. Our conclusions may apply to other sensory transduction systems involving protein complexes and biological membranes.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Matteo Riva
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.,Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Davide Zamboni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.,Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| |
Collapse
|
4
|
Brand I, Matyszewska D, Koch KW. Binding of a Myristoylated Protein to the Lipid Membrane Influenced by Interactions with the Polar Head Group Region. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14022-14032. [PMID: 30360613 DOI: 10.1021/acs.langmuir.8b02265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many cytoplasmic proteins contain a hydrophobic acyl chain, which facilitates protein binding to cell membranes. Hydrophobic interactions between the exposed acyl chain of the protein and hydrocarbon chains of lipids in the cell membrane are the driving force for this specific lipid-protein interaction. Recent studies point out that in addition to hydrophobic interactions the charge-charge and charge-dipole interactions between the polar head groups and basic amino acids contribute significantly to the binding process. Recoverin possesses a myristoyl chain at the N-terminus. In the presence of Ca2+ ions, the protein undergoes structural rearrangements, leading to the extrusion of the myristoyl chain, facilitating the protein binding to the membrane. In this work, we investigate the impact of interactions between the polar head group region of lipid molecules and recoverin which binds to the model membrane. The interaction with a planar lipid bilayer composed of phosphatidylcholine and cholesterol with myristoylated and nonmyristoylated recoverin is studied by in situ polarization modulation infrared reflection absorption spectroscopy. The binding of recoverin to the lipid bilayer depends on the transmembrane potential, indicating that the orientation of the permanent surface dipole in the supramolecular assembly of the lipid membrane influences the protein attachment to the membrane surface. Analysis of the amide I' mode indicates that the orientation of recoverin bound to the lipid bilayer is independent of the presence of myristoyl chain in the protein and of the folding of the protein into the tense or relaxed state. In contrast, it changes as a function of the membrane potential. At positive transmembrane potentials, the α-helical fragments of recoverin are oriented predominantly parallel to the bilayer surface. This orientation facilitates the insertion of the acyl chain of the protein into the hydrophobic region of the bilayer. At negative transmembrane potentials, the α-helical fragments of recoverin change their orientation with respect to the membrane surface, which is followed by the removal of the myristoyl chain from the membrane.
Collapse
Affiliation(s)
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , ul. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | | |
Collapse
|
5
|
Elbers D, Scholten A, Koch KW. Zebrafish Recoverin Isoforms Display Differences in Calcium Switch Mechanisms. Front Mol Neurosci 2018; 11:355. [PMID: 30323742 PMCID: PMC6172410 DOI: 10.3389/fnmol.2018.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Primary steps in vertebrate vision occur in rod and cone cells of the retina and require precise molecular switches in excitation, recovery, and adaptation. In particular, recovery of the photoresponse and light adaptation processes are under control of neuronal Ca2+ sensor (NCS) proteins. Among them, the Ca2+ sensor recoverin undergoes a pronounced Ca2+-dependent conformational change, a prototypical so-called Ca2+-myristoyl switch, which allows selective targeting of G protein-coupled receptor kinase. Zebrafish (Danio rerio) has gained attention as a model organism in vision research. It expresses four different recoverin isoforms (zRec1a, zRec1b, zRec2a, and zRec2b) that are orthologs to the one known mammalian variant. The expression pattern of the four isoforms cover both rod and cone cells, but the differential distribution in cones points to versatile functions of recoverin in these cell types. Initial functional studies on zebrafish larvae indicate different Ca2+-sensitive working modes for zebrafish recoverins, but experimental evidence is lacking so far. The aims of the present study are (1) to measure specific Ca2+-sensing properties of the different recoverin isoforms, (2) to ask whether switch mechanisms triggered by Ca2+ resemble that one observed with mammalian recoverin, and (3) to investigate a possible impact of an attached myristoyl moiety. For addressing these questions, we employ fluorescence spectroscopy, surface plasmon resonance (SPR), dynamic light scattering, and equilibrium centrifugation. Exposure of hydrophobic amino acids, due to the myristoyl switch, differed among isoforms and depended also on the myristoylation state of the particular recoverin. Ca2+-induced rearrangement of the protein-water shell was for all variants less pronounced than for the bovine ortholog indicating either a modified Ca2+-myristoyl switch or no switch. Our results have implications for a step-by-step response of recoverin isoforms to changing intracellular Ca2+ during illumination.
Collapse
Affiliation(s)
- Dana Elbers
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Alexander Scholten
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Brand I, Koch KW. Impact of the protein myristoylation on the structure of a model cell membrane in a protein bound state. Bioelectrochemistry 2018; 124:13-21. [PMID: 29990597 DOI: 10.1016/j.bioelechem.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
The neuronal calcium sensor protein recoverin is expressed in retinal rod and cone cells and is involved in the calcium-dependent control of receptor (rhodopsin) phosphorylation and receptor inactivation. In its Ca2+-saturated form recoverin is attached to membranes by an exposed myristoyl group and responds to oscillating changes of intracellular Ca2+-concentration by performing a so-called Ca2+-myristoyl switch. In this work we analyze changes in a liquid lipid bilayer interacting with myristoylated and non-myristoylated recoverin by employing polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) with electrochemical control. The lipid bilayer is transferred onto a polycrystalline gold electrode using Langmuir-Blodgett Langmuir-Schaefer transfer at the surface pressure π = 30 mN m-1 which ensures, necessary for the lipid-protein interaction, liquid state of the hydrocarbon chains of phospholipids. The model lipid bilayers are adsorbed directly on the Au electrode surface at transmembrane potentials -0.2 < ∆ϕM|S < 0.25 V. The interaction with recoverin leads to a stabilization of the adsorbed state of the lipid bilayer at positive transmembrane potentials. The interaction leads to a decrease in the surface charge density that accumulates on the membrane covered electrode surface, indicating changes in the lateral interactions in the lipid membrane. In situ spectroelectrochemical studies confirm orientation changes in the hydrophobic environment of the model membrane. Insertion of the myristoyl group of recoverin into the membrane is connected with an increase in the tilt of the hydrocarbon chains with respect to the surface normal and decrease in the bilayer thickness. Potential-induced pore formation and desorption of the lipid bilayer from the membrane surface is accompanied by the removal of the acyl chains of recoverin from the membrane.
Collapse
Affiliation(s)
- Izabella Brand
- University of Oldenburg, Department of Chemistry, D-26111 Oldenburg, Germany.
| | - Karl-Wilhelm Koch
- University of Oldenburg, Department of Neuroscience, D-26111 Oldenburg, Germany
| |
Collapse
|