1
|
Kumaeum W, Jaiyong P. Design and Computational Study of Sulfonamide-Modified Cannabinoids as Selective COX-2 Inhibitors Using Semiempirical Quantum Mechanical Methods: Drug-like Properties and Binding Affinity Insights. ACS OMEGA 2025; 10:13605-13620. [PMID: 40224452 PMCID: PMC11983223 DOI: 10.1021/acsomega.5c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025]
Abstract
Cyclooxygenase (COX) is one of the concerned targets in the development of anti-inflammatory therapies. Using semiempirical quantum mechanical (SQM) methods with implicit solvation, we investigated the binding free energies and selectivity of natural cannabinoids and their sulfonamide-modified derivatives with the COX and cannabinoid (CB) receptors. Validation against benchmark data sets demonstrated the accuracy of these methods in predicting binding affinities while minimizing false positives and false negatives often associated with conventional docking tools. Our findings indicate that Δ9-THC and its carboxylic acid derivative exhibit strong binding affinities for COX-2 and CB2, suggesting their potential as anti-inflammatory agents, though their significant CB1 affinity suggests psychoactive risks. In contrast, carboxylic acid derivatives such as CBCA, CBNA, CBEA, CBTA, and CBLA demonstrated selective binding to COX-2 and CB2, with low CB1 affinity, supporting their potential as promising anti-inflammatory leads with reduced psychoactive side effects. Sulfonamide-modified analogs further enhanced COX-2 binding affinities and selectivity, displaying favorable drug-like properties, including compliance with Lipinski's rules, noninhibition of cytochromes P450, and oral bioavailability. These results highlight the utility of GFN2-xTB in identifying and optimizing cannabinoid-based therapeutic candidates for anti-inflammatory applications.
Collapse
Affiliation(s)
- Watcharin Kumaeum
- Department of Chemistry,
Faculty of Science and Technology, Thammasat
University, Pathum
Thani 12120, Thailand
| | - Panichakorn Jaiyong
- Department of Chemistry,
Faculty of Science and Technology, Thammasat
University, Pathum
Thani 12120, Thailand
| |
Collapse
|
2
|
Rouzer CA, Marnett LJ. Structural and Chemical Biology of the Interaction of Cyclooxygenase with Substrates and Non-Steroidal Anti-Inflammatory Drugs. Chem Rev 2020; 120:7592-7641. [PMID: 32609495 PMCID: PMC8253488 DOI: 10.1021/acs.chemrev.0c00215] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclooxgenases are key enzymes of lipid signaling. They carry out the first step in the production of prostaglandins, important mediators of inflammation, pain, cardiovascular disease, and cancer, and they are the molecular targets for nonsteroidal anti-inflammatory drugs, which are among the oldest and most chemically diverse set of drugs known. Homodimeric proteins that behave as allosterically modulated, functional heterodimers, the cyclooxygenases exhibit complex kinetic behavior, requiring peroxide-dependent activation and undergoing suicide inactivation. Due to their important physiological and pathophysiological roles and keen interest on the part of the pharmaceutical industry, the cyclooxygenases have been the focus of a vast array of structural studies, leading to the publication of over 80 crystal structures of the enzymes in complex with substrates or inhibitors supported by a wealth of functional data generated by site-directed mutation experiments. In this review, we explore the chemical biology of the cyclooxygenases through the lens of this wealth of structural and functional information. We identify key structural features of the cyclooxygenases, break down their active site into regional binding pockets to facilitate comparisons between structures, and explore similarities and differences in the binding modes of the wide variety of ligands (both substrates and inhibitors) that have been characterized in complex with the enzymes. Throughout, we correlate structure with function whenever possible. Finally, we summarize what can and cannot be learned from the currently available structural data and discuss the critical intriguing questions that remain despite the wealth of information that has been amassed in this field.
Collapse
Affiliation(s)
- Carol A Rouzer
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Huang Y, Zhang B, Li J, Liu H, Zhang Y, Yang Z, Liu W. Design, synthesis, biological evaluation and docking study of novel indole-2-amide as anti-inflammatory agents with dual inhibition of COX and 5-LOX. Eur J Med Chem 2019; 180:41-50. [PMID: 31299586 DOI: 10.1016/j.ejmech.2019.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
In this work, a series of novel indole-2-amide compounds were designed, synthesized, characterized and the anti-inflammatory activity in vivo were evaluated. Compounds 8a, 10b, 12h, and 12l exhibited marked anti-inflammatory activity in 2,4-Dinitrofluorobenzenethe (DNFB) - induced mice auricle edema model. Further, compounds 8a, 10b and 12h exhibited potential in vitro COX-2 inhibitory activity (IC50 = 21.86, 23.3 and 23.21 nM, respectively), while the reference drug celecoxib was 11.20 nM. The most promising compound 10b was exhibited the highest selectivity for COX-2 (selectivity index (COX-1/COX-2) = 17.45) and moderate 5-LOX inhibitory activity (IC50 = 66 nM), which comparable to positive controlled zileuton (IC50 = 38.91 nM). In addition, the test results showed compounds 10b and 12h no significant cytotoxic activity on normal cells (RAW264.7). Further, at the active sites of the COX-1, COX-2 co-crystals, 3b and 4l showed higher binding forces in the molecular docking study, which consistent with the results of in vitro experiments. These results demonstrated that these compounds had dual inhibitory activity of COX/5-LOX, providing clues for further searching for safer and more effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yuanzheng Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Bin Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jiaming Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230031, China.
| | - Huicai Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yanchun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230031, China
| | - Zhang Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wandong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| |
Collapse
|
4
|
Xu S, Uddin MJ, Banerjee S, Duggan K, Musee J, Kiefer JR, Ghebreselasie K, Rouzer CA, Marnett LJ. Fluorescent indomethacin-dansyl conjugates utilize the membrane-binding domain of cyclooxygenase-2 to block the opening to the active site. J Biol Chem 2019; 294:8690-8698. [PMID: 31000626 DOI: 10.1074/jbc.ra119.007405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/20/2019] [Indexed: 01/31/2023] Open
Abstract
Many indomethacin amides and esters are cyclooxygenase-2 (COX-2)-selective inhibitors, providing a framework for the design of COX-2-targeted imaging and cancer chemotherapeutic agents. Although previous studies have suggested that the amide or ester moiety of these inhibitors binds in the lobby region, a spacious alcove within the enzyme's membrane-binding domain, structural details have been lacking. Here, we present observations on the crystal complexes of COX-2 with two indomethacin-dansyl conjugates (compounds 1 and 2) at 2.22-Å resolution. Both compounds are COX-2-selective inhibitors with IC50 values of 0.76 and 0.17 μm, respectively. Our results confirmed that the dansyl moiety is localized in and establishes hydrophobic interactions and several hydrogen bonds with the lobby of the membrane-binding domain. We noted that in both crystal structures, the linker tethering indomethacin to the dansyl moiety passes through the constriction at the mouth of the COX-2 active site, resulting in displacement and disorder of Arg-120, located at the opening to the active site. Both compounds exhibited higher inhibitory potency against a COX-2 R120A variant than against the WT enzyme. Inhibition kinetics of compound 2 were similar to those of the indomethacin parent compound against WT COX-2, and the R120A substitution reduced the time dependence of COX inhibition. These results provide a structural basis for the further design and optimization of conjugated COX reagents for imaging of malignant or inflammatory tissues containing high COX-2 levels.
Collapse
Affiliation(s)
- Shu Xu
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Md Jashim Uddin
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853.,Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois 60439, and
| | - Kelsey Duggan
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Joel Musee
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | - Kebreab Ghebreselasie
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Carol A Rouzer
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Lawrence J Marnett
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,
| |
Collapse
|
5
|
Sárosi MB, Lybrand TP. Molecular Dynamics Simulation of Cyclooxygenase-2 Complexes with Indomethacin closo-Carborane Analogs. J Chem Inf Model 2018; 58:1990-1999. [PMID: 30067351 DOI: 10.1021/acs.jcim.8b00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular dynamics simulation of carborane-containing ligands in complex with target enzymes is a challenging task due to the unique structure and properties of the carborane substituents and relative lack of appropriate experimental data to help assess the quality of carborane force field parameters. Here, we report results from energy minimization calculations for a series of carborane-amino acid complexes using carborane force field parameters published previously in the literature and adapted for use with the AMBER ff99SB and ff14SB potential functions. These molecular mechanics results agree well with quantum mechanical geometry optimization calculations obtained using dispersion-corrected density functional theory methods, suggesting that the carborane force field parameters should be suitable for more detailed calculations. We then performed molecular dynamics simulations for the 1,2-, 1,7-, and 1,12-dicarba- closo-dodecaborane(12) derivatives of indomethacin methyl ester bound with cyclooxygenase-2. The simulation results suggest that only the ortho-carborane derivative forms a stable complex, in agreement with experimental findings, and provide insight into the possible molecular basis for isomer binding selectivity.
Collapse
Affiliation(s)
- Menyhárt-Botond Sárosi
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy , Leipzig University , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Terry P Lybrand
- Departments of Chemistry and Pharmacology, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37235-1822 , United States
| |
Collapse
|
6
|
Sárosi MB. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study. J Mol Model 2018; 24:150. [PMID: 29869728 DOI: 10.1007/s00894-018-3686-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/21/2018] [Indexed: 01/24/2023]
Abstract
Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.
Collapse
Affiliation(s)
- Menyhárt-Botond Sárosi
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|