1
|
Zhang X, Feng X, Ma L, Lei J, Li G, Zhang W, Liang H, Tong B, Wu D, Yang C, Tan L. A sonosensitive diphenylalanine-based broad-spectrum antimicrobial peptide. Nat Biomed Eng 2025:10.1038/s41551-025-01377-w. [PMID: 40316686 DOI: 10.1038/s41551-025-01377-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/14/2025] [Indexed: 05/04/2025]
Abstract
The antimicrobial effect of antimicrobial peptides is typically slow; they can be rapidly biodegraded and often have non-selective toxicity and elaborate sequences. Here we report a short peptide that is activated by ultrasound, that shows high broad-spectrum antibacterial efficiency (>99%) against clinically isolated methicillin-resistant bacteria (specifically, Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Enterobacter cancerogenus and Pseudomonas aeruginosa) with 15 min of ultrasound irradiation, and that has negligible toxicity and low self-antibacterial activity. We selected the peptide, FFRKSKEK (a segment from the human host-defence LL-37 peptide), from a library of peptides with piezoelectric diphenylalanine (FF) sequences, low toxicity, hydrophobicity and net positive charge. We show via all-atom molecular dynamics simulations that ultrasound amplifies the membrane-penetrating ability of peptides with FF sequences and that its piezoelectric polarization generates reactive-oxygen species and disturbs bacterial electron-transport chains. In a goat model of hard-to-treat intervertebral infection, the sonosensitive peptide led to better outcomes than vancomycin. Antimicrobial peptides activated by ultrasound may offer a clinically relevant strategy for combating antibiotic-resistant infections.
Collapse
Affiliation(s)
- Xiaoguang Zhang
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Ma
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Lei
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifeng Zhang
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaizhen Liang
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bide Tong
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lei Tan
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Kuatsjah E, Schwartz A, Zahn M, Tornesakis K, Kellermyer ZA, Ingraham MA, Woodworth SP, Ramirez KJ, Cox PA, Pickford AR, Salvachúa D. Biochemical and structural characterization of enzymes in the 4-hydroxybenzoate catabolic pathway of lignin-degrading white-rot fungi. Cell Rep 2024; 43:115002. [PMID: 39589922 DOI: 10.1016/j.celrep.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/15/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
White-rot fungi (WRF) are the most efficient lignin-degrading organisms in nature. However, their capacity to use lignin-related aromatic compounds, such as 4-hydroxybenzoate, as carbon sources has only been described recently. Previously, the hydroxyquinol pathway was proposed for the bioconversion of these compounds in fungi, but gene- and structure-function relationships of the full enzymatic pathway remain uncharacterized in any single fungal species. Here, we characterize seven enzymes from two WRF, Trametes versicolor and Gelatoporia subvermispora, which constitute a four-enzyme cascade from 4-hydroxybenzoate to β-ketoadipate via the hydroxyquinol pathway. Furthermore, we solve the crystal structure of four of these enzymes and identify mechanistic differences with the closest bacterial and fungal structural homologs. Overall, this research expands our understanding of aromatic catabolism by WRF and establishes an alternative strategy for the conversion of lignin-related compounds to the valuable molecule β-ketoadipate, contributing to the development of biological processes for lignin valorization.
Collapse
Affiliation(s)
- Eugene Kuatsjah
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Alexa Schwartz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA; Advanced Energy Systems Graduate Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Michael Zahn
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Konstantinos Tornesakis
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Paul A Cox
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Andrew R Pickford
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
3
|
Richardson BC, Turlington ZR, Vaz Ferreira de Macedo S, Phillips SK, Perry K, Brancato SG, Cooke EW, Gwilt JR, Dasovich MA, Roering AJ, Rossi FM, Snider MJ, French JB, Hicks KA. Structural and Functional Characterization of a Novel Class A Flavin Monooxygenase from Bacillus niacini. Biochemistry 2024; 63:2506-2516. [PMID: 39265075 DOI: 10.1021/acs.biochem.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
A gene cluster responsible for the degradation of nicotinic acid (NA) in Bacillus niacini has recently been identified, and the structures and functions of the resulting enzymes are currently being evaluated to establish pathway intermediates. One of the genes within this cluster encodes a flavin monooxygenase (BnFMO) that is hypothesized to catalyze a hydroxylation reaction. Kinetic analyses of the recombinantly purified BnFMO suggest that this enzyme catalyzes the hydroxylation of 2,6-dihydroxynicotinic acid (2,6-DHNA) or 2,6-dihydroxypyridine (2,6-DHP), which is formed spontaneously by the decarboxylation of 2,6-DHNA. To understand the details of this hydroxylation reaction, we determined the structure of BnFMO using a multimodel approach combining protein X-ray crystallography and cryo-electron microscopy (cryo-EM). A liganded BnFMO cryo-EM structure was obtained in the presence of 2,6-DHP, allowing us to make predictions about potential catalytic residues. The structural data demonstrate that BnFMO is trimeric, which is unusual for Class A flavin monooxygenases. In both the electron density and coulomb potential maps, a region at the trimeric interface was observed that was consistent with and modeled as lipid molecules. High-resolution mass spectral analysis suggests that there is a mixture of phosphatidylethanolamine and phosphatidylglycerol lipids present. Together, these data provide insights into the molecular details of the central hydroxylation reaction unique to the aerobic degradation of NA in Bacillus niacini.
Collapse
Affiliation(s)
- Brian C Richardson
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Zachary R Turlington
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | | | - Sara K Phillips
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Savannah G Brancato
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Emmalee W Cooke
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
- Department of Chemistry, the College of Wooster, Wooster, Ohio 44691, United States
| | - Jonathan R Gwilt
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Morgan A Dasovich
- Department of Chemistry, the College of Wooster, Wooster, Ohio 44691, United States
| | - Andrew J Roering
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Francis M Rossi
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Mark J Snider
- Department of Chemistry, the College of Wooster, Wooster, Ohio 44691, United States
| | - Jarrod B French
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Katherine A Hicks
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| |
Collapse
|
4
|
Höing L, Sowa ST, Toplak M, Reinhardt JK, Jakob R, Maier T, Lill MA, Teufel R. Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products. Chem Sci 2024; 15:7749-7756. [PMID: 38784727 PMCID: PMC11110157 DOI: 10.1039/d4sc01715c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
The non-benzenoid aromatic tropone ring is a structural motif of numerous microbial and plant natural products with potent bioactivities. In bacteria, tropone biosynthesis involves early steps of the widespread CoA-dependent phenylacetic acid (paa) catabolon, from which a shunt product is sequestered and surprisingly further utilized as a universal precursor for structurally and functionally diverse tropone derivatives such as tropodithietic acid or (hydroxy)tropolones. Here, we elucidate the biosynthesis of the antibiotic 3,7-dihydroxytropolone in Actinobacteria by in vitro pathway reconstitution using paa catabolic enzymes as well as dedicated downstream tailoring enzymes, including a thioesterase (TrlF) and two flavoprotein monooxygenases (TrlCD and TrlE). We furthermore mechanistically and structurally characterize the multifunctional key enzyme TrlE, which mediates an unanticipated ipso-substitution involving a hydroxylation and subsequent decarboxylation of the CoA-freed side chain, followed by ring oxidation to afford tropolone. This study showcases a remarkably efficient strategy for 3,7-dihydroxytropolone biosynthesis and illuminates the functions of the involved biosynthetic enzymes.
Collapse
Affiliation(s)
- Lars Höing
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Sven T Sowa
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Marina Toplak
- Hilde-Mangold-Haus (CIBSS), University of Freiburg Habsburgerstrasse 49 79104 Freiburg im Breisgau Germany
| | - Jakob K Reinhardt
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Roman Jakob
- Biozentrum, University of Basel Spitalstrasse 41 4056 Basel Switzerland
| | - Timm Maier
- Biozentrum, University of Basel Spitalstrasse 41 4056 Basel Switzerland
| | - Markus A Lill
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Robin Teufel
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
5
|
Zhang Q, Chen Q, Shaik S, Wang B. Flavin-N5OOH Functions as both a Powerful Nucleophile and a Base in the Superfamily of Flavoenzymes. Angew Chem Int Ed Engl 2024; 63:e202318629. [PMID: 38299700 DOI: 10.1002/anie.202318629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Flavoenzymes can mediate a large variety of oxidation reactions through the activation of oxygen. However, the O2 activation chemistry of flavin enzymes is not yet fully exploited. Normally, the O2 activation occurs at the C4a site of the flavin cofactor, yielding the flavin C4a-(hydro)hydroperoxyl species in monooxygenases or oxidases. Using extensive MD simulations, QM/MM calculations and QM calculations, our studies reveal the formation of the common nucleophilic species, Flavin-N5OOH, in two distinct flavoenzymes (RutA and EncM). Our studies show that Flavin-N5OOH acts as a powerful nucleophile that promotes C-N cleavage of uracil in RutA, and a powerful base in the deprotonation of substrates in EncM. We reason that Flavin-N5OOH can be a common reactive species in the superfamily of flavoenzymes, which accomplish generally selective general base catalysis and C-X (X=N, S, Cl, O) cleavage reactions that are otherwise challenging with solvated hydroxide ion base. These results expand our understanding of the chemistry and catalysis of flavoenzymes.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
6
|
Ouyang X, Liu G, Guo L, Wu G, Xu P, Zhao YL, Tang H. A multifunctional flavoprotein monooxygenase HspB for hydroxylation and C-C cleavage of 6-hydroxy-3-succinoyl-pyridine. Appl Environ Microbiol 2024; 90:e0225523. [PMID: 38415602 PMCID: PMC10952382 DOI: 10.1128/aem.02255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024] Open
Abstract
Flavoprotein monooxygenases catalyze reactions, including hydroxylation and epoxidation, involved in the catabolism, detoxification, and biosynthesis of natural substrates and industrial contaminants. Among them, the 6-hydroxy-3-succinoyl-pyridine (HSP) monooxygenase (HspB) from Pseudomonas putida S16 facilitates the hydroxylation and C-C bond cleavage of the pyridine ring in nicotine. However, the mechanism for biodegradation remains elusive. Here, we refined the crystal structure of HspB and elucidated the detailed mechanism behind the oxidative hydroxylation and C-C cleavage processes. Leveraging structural information about domains for binding the cofactor flavin adenine dinucleotide (FAD) and HSP substrate, we used molecular dynamics simulations and quantum/molecular mechanics calculations to demonstrate that the transfer of an oxygen atom from the reactive FAD peroxide species (C4a-hydroperoxyflavin) to the C3 atom in the HSP substrate constitutes a rate-limiting step, with a calculated reaction barrier of about 20 kcal/mol. Subsequently, the hydrogen atom was rebounded to the FAD cofactor, forming C4a-hydroxyflavin. The residue Cys218 then catalyzed the subsequent hydrolytic process of C-C cleavage. Our findings contribute to a deeper understanding of the versatile functions of flavoproteins in the natural transformation of pyridine and HspB in nicotine degradation.IMPORTANCEPseudomonas putida S16 plays a pivotal role in degrading nicotine, a toxic pyridine derivative that poses significant environmental challenges. This study highlights a key enzyme, HspB (6-hydroxy-3-succinoyl-pyridine monooxygenase), in breaking down nicotine through the pyrrolidine pathway. Utilizing dioxygen and a flavin adenine dinucleotide cofactor, HspB hydroxylates and cleaves the substrate's side chain. Structural analysis of the refined HspB crystal structure, combined with state-of-the-art computations, reveals its distinctive mechanism. The crucial function of Cys218 was never discovered in its homologous enzymes. Our findings not only deepen our understanding of bacterial nicotine degradation but also open avenues for applications in both environmental cleanup and pharmaceutical development.
Collapse
Affiliation(s)
- Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongquan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Turlington ZR, Vaz Ferreira de Macedo S, Perry K, Belsky SL, Faust JA, Snider MJ, Hicks KA. Ligand bound structure of a 6-hydroxynicotinic acid 3-monooxygenase provides mechanistic insights. Arch Biochem Biophys 2024; 752:109859. [PMID: 38104959 PMCID: PMC11726978 DOI: 10.1016/j.abb.2023.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
6-Hydroxynicotinic acid 3-monooxygenase (NicC) is a bacterial enzyme involved in the degradation of nicotinic acid. This enzyme is a Class A flavin-dependent monooxygenase that catalyzes a unique decarboxylative hydroxylation. The unliganded structure of this enzyme has previously been reported and studied using steady- and transient-state kinetics to support a comprehensive kinetic mechanism. Here we report the crystal structure of the H47Q NicC variant in both a ligand-bound (solved to 2.17 Å resolution) and unliganded (1.51 Å resolution) form. Interestingly, in the liganded form, H47Q NicC is bound to 2-mercaptopyridine (2-MP), a contaminant present in the commercial stock of 6-mercaptopyridine-3-carboxylic acid(6-MNA), a substrate analogue. 2-MP binds weakly to H47Q NicC and is not a substrate for the enzyme. Based on kinetic and thermodynamic characterization, we have fortuitously captured a catalytically inactive H47Q NicC•2-MP complex in our crystal structure. This complex reveals interesting mechanistic details about the reaction catalyzed by 6-hydroxynicotinic acid 3-monooxygenase.
Collapse
Affiliation(s)
- Zachary R Turlington
- Department of Chemistry, State University of New York at Cortland, Cortland, NY, 13045, United States
| | | | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, United States
| | - Sam L Belsky
- Department of Chemistry, The College of Wooster, Wooster, OH, 44691, United States
| | - Jennifer A Faust
- Department of Chemistry, The College of Wooster, Wooster, OH, 44691, United States
| | - Mark J Snider
- Department of Chemistry, The College of Wooster, Wooster, OH, 44691, United States
| | - Katherine A Hicks
- Department of Chemistry, State University of New York at Cortland, Cortland, NY, 13045, United States.
| |
Collapse
|
8
|
Phillips SK, Brancato SG, MacMillan SN, Snider MJ, Roering AJ, Hicks KA. Synthesis and crystallographic characterization of 6-hydroxy-1,2-dihydropyridin-2-one. Acta Crystallogr E Crystallogr Commun 2023; 79:1147-1150. [PMID: 38313119 PMCID: PMC10833402 DOI: 10.1107/s205698902300974x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/07/2023] [Indexed: 02/06/2024]
Abstract
The title compound, C5H5NO2, is a hy-droxy-lated pyridine ring that has been studied for its involvement in microbial degradation of nicotinic acid. Here we describe its synthesis as a formic acid salt, rather than the standard hydro-chloride salt that is commercially available, and its spectroscopic and crystallographic characterization.
Collapse
Affiliation(s)
- Sara K. Phillips
- Department of Chemistry, The State University of New York at Cortland, Cortland, New York 13045, USA
| | - Savannah G. Brancato
- Department of Chemistry, The State University of New York at Cortland, Cortland, New York 13045, USA
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Mark J. Snider
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, USA
| | - Andrew J. Roering
- Department of Chemistry, The State University of New York at Cortland, Cortland, New York 13045, USA
| | - Katherine A. Hicks
- Department of Chemistry, The State University of New York at Cortland, Cortland, New York 13045, USA
| |
Collapse
|
9
|
Perkins SW, Hlaing MZ, Hicks KA, Rajakovich LJ, Snider MJ. Mechanism of the Multistep Catalytic Cycle of 6-Hydroxynicotinate 3-Monooxygenase Revealed by Global Kinetic Analysis. Biochemistry 2023; 62:1553-1567. [PMID: 37130364 DOI: 10.1021/acs.biochem.2c00514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The class A flavoenzyme 6-hydroxynicotinate 3-monooxygenase (NicC) catalyzes a rare decarboxylative hydroxylation reaction in the degradation of nicotinate by aerobic bacteria. While the structure and critical residues involved in catalysis have been reported, the mechanism of this multistep enzyme has yet to be determined. A kinetic understanding of the NicC mechanism would enable comparison to other phenolic hydroxylases and illuminate its bioengineering potential for remediation of N-heterocyclic aromatic compounds. Toward these goals, transient state kinetic analyses by stopped-flow spectrophotometry were utilized to follow rapid changes in flavoenzyme absorbance spectra during all three stages of NicC catalysis: (1) 6-HNA binding; (2) NADH binding and FAD reduction; and (3) O2 binding with C4a-adduct formation, substrate hydroxylation, and FAD regeneration. Global kinetic simulations by numeric integration were used to supplement analytical fitting of time-resolved data and establish a kinetic mechanism. Results indicate that 6-HNA binding is a two-step process that substantially increases the affinity of NicC for NADH and enables the formation of a charge-transfer-complex intermediate to enhance the rate of flavin reduction. Singular value decomposition of the time-resolved spectra during the reaction of the substrate-bound, reduced enzyme with dioxygen provides evidence for the involvement of C4a-hydroperoxy-flavin and C4a-hydroxy-flavin intermediates in NicC catalysis. Global analysis of the full kinetic mechanism suggests that steady-state catalytic turnover is partially limited by substrate hydroxylation and C4a-hydroxy-flavin dehydration to regenerate the flavoenzyme. Insights gleaned from the kinetic model and determined microscopic rate constants provide a fundamental basis for understanding NicC's substrate specificity and reactivity.
Collapse
Affiliation(s)
- Scott W Perkins
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - May Z Hlaing
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - Katherine A Hicks
- Department of Chemistry, The State University of New York College at Cortland, Cortland, New York 13045, United States
| | - Lauren J Rajakovich
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mark J Snider
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
10
|
Wang Q, Wang H, Lv M, Wang X, Chen L. Sulfamethoxazole degradation by Aeromonas caviae and co-metabolism by the mixed bacteria. CHEMOSPHERE 2023; 317:137882. [PMID: 36657578 DOI: 10.1016/j.chemosphere.2023.137882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Sulfamethoxazole (SMX) is a frequently detected antibiotic in the environment and has attracted much attention. Aeromonas caviae strain GLB-10 was isolated, which could degrade SMX to Aniline and 3-Amino-5-methylisoxazole. Compared to the single bacteria, the mixed bacteria including stain GLB-10, Vibrio diabolicus strain L2-2, Zobellella taiwanensis, Microbacterium testaceum, Methylobacterium, etc, had an ultrahigh degradation efficiency to SMX, with 250 mg/L SMX being degraded in 3 days. In addition to bioproducts of single bacteria, SMX bioproducts by the mixed bacteria also included acetanilide and hydroquinone which were not detected in the single bacteria. The SMX degradation mechanism of the mixed bacteria was more complicated including acetylation, sulfur reduction 4S pathway, and ipso-hydrolysis. The molecular mechanism of the mixed bacteria degrading SMX was also investigated, revealing that the resistance mechanism related to protein outer membrane protein and catalase peroxidase were overexpressed, meanwhile, 6-hydroxynicotinate 3-monooxygenase and ammonia monooxygenase might be the key proteins in SMX degradation. The mixed bacteria could efficiently degrade SMX in different real environments including tap water, river water, artificial lake water, estuary, and, marine water, and have very great research value in bacterial co-metabolism and biodegradation of sulfonamides antibiotics in the environment.
Collapse
Affiliation(s)
- Qiaoning Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
11
|
Fu Y, Wang B, Cao Z. Biodegradation of 2,5-Dihydroxypyridine by 2,5-Dihydroxypyridine Dioxygenase and Its Mutants: Insights into O–O Bond Activation and Flexible Reaction Mechanisms from QM/MM Simulations. Inorg Chem 2022; 61:20501-20512. [DOI: 10.1021/acs.inorgchem.2c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Bokor E, Ámon J, Varga M, Szekeres A, Hegedűs Z, Jakusch T, Szakonyi Z, Flipphi M, Vágvölgyi C, Gácser A, Scazzocchio C, Hamari Z. A complete nicotinate degradation pathway in the microbial eukaryote Aspergillus nidulans. Commun Biol 2022; 5:723. [PMID: 35864155 PMCID: PMC9304392 DOI: 10.1038/s42003-022-03684-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Several strikingly different aerobic and anaerobic pathways of nicotinate breakdown are extant in bacteria. Here, through reverse genetics and analytical techniques we elucidated in Aspergillus nidulans, a complete eukaryotic nicotinate utilization pathway. The pathway extant in this fungus and other ascomycetes, is quite different from bacterial ones. All intermediate metabolites were identified. The cognate proteins, encoded by eleven genes (hxn) mapping in three clusters are co-regulated by a specific transcription factor. Several enzymatic steps have no prokaryotic equivalent and two metabolites, 3-hydroxypiperidine-2,6-dione and 5,6-dihydroxypiperidine-2-one, have not been identified previously in any organism, the latter being a novel chemical compound. Hydrolytic ring opening results in α-hydroxyglutaramate, a compound not detected in analogous prokaryotic pathways. Our earlier phylogenetic analysis of Hxn proteins together with this complete biochemical pathway illustrates convergent evolution of catabolic pathways between fungi and bacteria.
Collapse
Affiliation(s)
- Eszter Bokor
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Judit Ámon
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Mónika Varga
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - András Szekeres
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Zsófia Hegedűs
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Tamás Jakusch
- University of Szeged Faculty of Science and Informatics, Department of Inorganic and Analytical Chemistry, Szeged, Hungary
| | - Zsolt Szakonyi
- University of Szeged Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Szeged, Hungary
| | - Michel Flipphi
- Institute de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Csaba Vágvölgyi
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
- MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Claudio Scazzocchio
- Section of Microbiology, Department of Infectious Diseases, Imperial College, London, United Kingdom.
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Zsuzsanna Hamari
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary.
| |
Collapse
|
13
|
Westphal AH, Tischler D, van Berkel WJH. Natural diversity of FAD-dependent 4-hydroxybenzoate hydroxylases. Arch Biochem Biophys 2021; 702:108820. [PMID: 33684360 DOI: 10.1016/j.abb.2021.108820] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/05/2023]
Abstract
4-Hydroxybenzoate 3-hydroxylase (PHBH) is the most extensively studied group A flavoprotein monooxygenase (FPMO). PHBH is almost exclusively found in prokaryotes, where its induction, usually as a consequence of lignin degradation, results in the regioselective formation of protocatechuate, one of the central intermediates in the global carbon cycle. In this contribution we introduce several less known FAD-dependent 4-hydroxybenzoate hydroxylases. Phylogenetic analysis showed that the enzymes discussed here reside in distinct clades of the group A FPMO family, indicating their separate divergence from a common ancestor. Protein homology modelling revealed that the fungal 4-hydroxybenzoate 3-hydroxylase PhhA is structurally related to phenol hydroxylase (PHHY) and 3-hydroxybenzoate 4-hydroxylase (3HB4H). 4-Hydroxybenzoate 1-hydroxylase (4HB1H) from yeast catalyzes an oxidative decarboxylation reaction and is structurally similar to 3-hydroxybenzoate 6-hydroxylase (3HB6H), salicylate hydroxylase (SALH) and 6-hydroxynicotinate 3-monooxygenase (6HNMO). Genome mining suggests that the 4HB1H activity is widespread in the fungal kingdom and might be responsible for the oxidative decarboxylation of vanillate, an import intermediate in lignin degradation. 4-Hydroxybenzoyl-CoA 1-hydroxylase (PhgA) catalyzes an intramolecular migration reaction (NIH shift) during the three-step conversion of 4-hydroxybenzoate to gentisate in certain Bacillus species. PhgA is phylogenetically related to 4-hydroxyphenylacetate 1-hydroxylase (4HPA1H). In summary, this paper shines light on the natural diversity of group A FPMOs that are involved in the aerobic microbial catabolism of 4-hydroxybenzoate.
Collapse
Affiliation(s)
- Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands.
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Germany.
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
14
|
Zhu B, Shen J, Jiang R, Jin L, Zhan G, Liu J, Sha Q, Xu R, Miao L, Yang C. Abnormalities in gut microbiota and serum metabolites in hemodialysis patients with mild cognitive decline: a single-center observational study. Psychopharmacology (Berl) 2020; 237:2739-2752. [PMID: 32601991 DOI: 10.1007/s00213-020-05569-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
RATIONALE Although a growing body of evidence indicates that the scores of cognitive function in hemodialysis patients are significantly lower than those of healthy individuals, underlying mechanisms have not been fully elucidated. OBJECTIVES To investigate the roles of gut microbiota and serum metabolites in hemodialysis patients with mild cognitive decline (MCD). METHODS A total of 30 healthy individuals and 77 hemodialysis patients were enrolled and were classified into healthy control (HC), normal cognitive function (NCF), and MCD groups by evaluation of Montreal Cognitive Assessment. Fecal samples were analyzed by 16S rRNA and serum samples were analyzed by gas chromatography-mass spectrometry from all subjects. RESULTS The 16S rRNA study demonstrated that the gut microbiota profiles, including α- and β-diversity, and a number of 16 gut bacteria were significantly altered in the MCD group compared with those in HC or those with NCF. A metabonomics study showed that a total of 29 serum metabolites were altered in the MCD group. Receiver operating characteristic curves showed that Genus Bilophila and serum putrescine might be sensitive biomarkers to indicate MCD in patients with hemodialysis. CONCLUSIONS These findings demonstrate gut microbiota and serum metabolites were probably involved in the pathogenesis of hemodialysis-related MCD. Therapeutic strategies targeting abnormalities in gut microbiota and serum metabolites may facilitate the beneficial effects for hemodialysis patients with MCD.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jianqin Shen
- The Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Riyue Jiang
- Department of Ultrasound Imaging, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Lina Jin
- The Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinfeng Liu
- The Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Qi Sha
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Rongpeng Xu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Liying Miao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
15
|
Catalytic mechanism for the conversion of salicylate into catechol by the flavin-dependent monooxygenase salicylate hydroxylase. Int J Biol Macromol 2019; 129:588-600. [DOI: 10.1016/j.ijbiomac.2019.01.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022]
|
16
|
Nakamoto KD, Perkins SW, Campbell RG, Bauerle MR, Gerwig TJ, Gerislioglu S, Wesdemiotis C, Anderson MA, Hicks KA, Snider MJ. Mechanism of 6-Hydroxynicotinate 3-Monooxygenase, a Flavin-Dependent Decarboxylative Hydroxylase Involved in Bacterial Nicotinic Acid Degradation. Biochemistry 2019; 58:1751-1763. [PMID: 30810301 DOI: 10.1021/acs.biochem.8b00969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
6-Hydroxynicotinate 3-monooxygenase (NicC) is a Group A FAD-dependent monooxygenase that catalyzes the decarboxylative hydroxylation of 6-hydroxynicotinic acid (6-HNA) to 2,5-dihydroxypyridine (2,5-DHP) with concomitant oxidation of NADH in nicotinic acid degradation by aerobic bacteria. Two mechanisms for the decarboxylative hydroxylation half-reaction have been proposed [Hicks, K., et al. (2016) Biochemistry 55, 3432-3446]. Results with Bordetella bronchiseptica RB50 NicC here show that a homocyclic analogue of 6-HNA, 4-hydroxybenzoic acid (4-HBA), is decarboxylated and hydroxylated by NicC with a 420-fold lower catalytic efficiency than is 6-HNA. The 13( V/ K), measured with wild-type NicC by isotope ratio mass spectrometry following the natural abundance of 13C in the CO2 product, is inverse for both 6-HNA (0.9989 ± 0.0002) and 4-HBA (0.9942 ± 0.0004) and becomes negligible (0.9999 ± 0.0004) for 5-chloro-6-HNA, an analogue that is 10-fold more catalytically efficient than 6-HNA. Covalently bound 6-HNA complexes of NicC are not observed by mass spectrometry. Comparative steady-state kinetic and Kd6HNA analyses of active site NicC variants (C202A, H211A, H302A, H47E, Y215F, and Y225F) identify Tyr215 and His47 as critical determinants both of 6-HNA binding ( KdY215F/ KdWT > 240; KdH47E/ KdWT > 350) and in coupling rates of 2,5-DHP and NAD+ product formation ([2,5-DHP]/[NAD+] = 1.00 (WT), 0.005 (Y215F), and 0.07 (H47E)]. Results of these functional analyses are in accord with an electrophilic aromatic substitution reaction mechanism in which His47-Tyr215 may serve as the general base to catalyze substrate hydroxylation and refine the structural model for substrate binding by NicC.
Collapse
Affiliation(s)
- Kent D Nakamoto
- Department of Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Scott W Perkins
- Department of Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Ryan G Campbell
- Department of Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Matthew R Bauerle
- Department of Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Tyler J Gerwig
- Department of Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Selim Gerislioglu
- Department of Chemistry , University of Akron , Akron , Ohio 44325 , United States
| | - Chrys Wesdemiotis
- Department of Chemistry , University of Akron , Akron , Ohio 44325 , United States
| | - Mark A Anderson
- Institute for Enzyme Research, Department of Biochemistry , University of Wisconsin , Madison , Wisconsin 53726 , United States
| | - Katherine A Hicks
- Department of Chemistry , The State University of New York College at Cortland , Cortland , New York 13045 , United States
| | - Mark J Snider
- Department of Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| |
Collapse
|
17
|
He C, Huang Y, Liu P, Wei J, Yang Y, Xu L, Xiao M. Transcriptome analysis of genes and metabolic pathways associated with nicotine degradation in Aspergillus oryzae 112822. BMC Genomics 2019; 20:86. [PMID: 30678639 PMCID: PMC6346535 DOI: 10.1186/s12864-019-5446-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/10/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Nicotine-degrading microorganisms (NDMs) have recently received much attention since they can consume nicotine as carbon and nitrogen source for growth. In our previous work, we isolated an efficient nicotine-degrading fungus Aspergillus oryzae 112822 and first proposed a novel demethylation pathway of nicotine degradation in fungi. However, the underlying mechanisms of the demethylation pathway remain unresolved. In the present study, we performed a comparative transcriptome analysis to elucidate the molecular mechanisms of nicotine tolerance and degradation in A. oryzae 112822. RESULTS We acquired a global view of the transcriptional regulation of A. oryzae 112822 exposed to nicotine and identified 4381 differentially expressed genes (DEGs) by nicotine treatment. Candidate genes encoding cytochrome P450 monooxygenases (CYPs), FAD-containing amine oxidase, molybdenum cofactor (Moco)-containing hydroxylase, and NADH-dependent and FAD-containing hydroxylase were proposed to participate in the demethylation pathway of nicotine degradation. Analysis of these data also revealed that increased energy was invested to drive nicotine detoxification. Nicotine treatment led to overproduction of reactive oxygen species (ROS), which formed intracellular oxidative stress that could induce the expression of several antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxiredoxin (Prx). Thioredoxin system was induced to restore the intracellular redox homeostasis. Several glutathione S-transferases (GSTs) were induced, most likely to participate in phase II detoxification of nicotine by catalyzing the conjugation of glutathione (GSH) to active metabolites. The toxin efflux pumps, such as the ATP-Binding Cassette (ABC) transporters and the major facilitator superfamily (MFS) transporters, were overexpressed to overcome the intracellular toxin accumulation. By contrast, the metabolic pathways related to cellular growth and reproduction, such as ribosome biogenesis and DNA replication, were inhibited by nicotine treatment. CONCLUSION These results revealed that complex regulation networks, involving detoxification, transport, and oxidative stress response accompanied by increased energy investment, were developed for nicotine tolerance and degradation in A. oryzae 112822. This work provided the first insight into the metabolic regulation of nicotine degradation and laid the foundation for further revealing the molecular mechanisms of the nicotine demethylation pathway in filamentous fungi.
Collapse
Affiliation(s)
- Chunjuan He
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237 China
| | - Yougui Huang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237 China
| | - Peng Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237 China
| | - Jianhuan Wei
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237 China
| | - Yirui Yang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237 China
| | - Li Xu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237 China
| | - Min Xiao
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237 China
| |
Collapse
|
18
|
Časaitė V, Sadauskas M, Vaitekūnas J, Gasparavičiūtė R, Meškienė R, Skikaitė I, Sakalauskas M, Jakubovska J, Tauraitė D, Meškys R. Engineering of a chromogenic enzyme screening system based on an auxiliary indole-3-carboxylic acid monooxygenase. Microbiologyopen 2019; 8:e00795. [PMID: 30666828 PMCID: PMC6692525 DOI: 10.1002/mbo3.795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/24/2022] Open
Abstract
Here, we present a proof‐of‐principle for a new high‐throughput functional screening of metagenomic libraries for the selection of enzymes with different activities, predetermined by the substrate being used. By this approach, a total of 21 enzyme‐coding genes were selected, including members of xanthine dehydrogenase, aldehyde dehydrogenase (ALDH), and amidohydrolase families. The screening system is based on a pro‐chromogenic substrate, which is transformed by the target enzyme to indole‐3‐carboxylic acid. The later compound is converted to indoxyl by a newly identified indole‐3‐carboxylate monooxygenase (Icm). Due to the spontaneous oxidation of indoxyl to indigo, the target enzyme‐producing colonies turn blue. Two types of pro‐chromogenic substrates have been tested. Indole‐3‐carboxaldehydes and the amides of indole‐3‐carboxylic acid have been applied as substrates for screening of the ALDHs and amidohydrolases, respectively. Both plate assays described here are rapid, convenient, easy to perform, and adaptable for the screening of a large number of samples both in Escherichia coli and Rhodococcus sp. In addition, the fine‐tuning of the pro‐chromogenic substrate allows screening enzymes with the desired substrate specificity.
Collapse
Affiliation(s)
- Vida Časaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mikas Sadauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rita Meškienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Izabelė Skikaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Sakalauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
19
|
A Novel Degradation Mechanism for Pyridine Derivatives in Alcaligenes faecalis JQ135. Appl Environ Microbiol 2018; 84:AEM.00910-18. [PMID: 29802182 DOI: 10.1128/aem.00910-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
5-Hydroxypicolinic acid (5HPA), a natural pyridine derivative, is microbially degraded in the environment. However, the physiological, biochemical, and genetic foundations of 5HPA metabolism remain unknown. In this study, an operon (hpa), responsible for 5HPA degradation, was cloned from Alcaligenes faecalis JQ135. HpaM was a monocomponent flavin adenine dinucleotide (FAD)-dependent monooxygenase and shared low identity (only 28 to 31%) with reported monooxygenases. HpaM catalyzed the ortho decarboxylative hydroxylation of 5HPA, generating 2,5-dihydroxypyridine (2,5DHP). The monooxygenase activity of HpaM was FAD and NADH dependent. The apparent Km values of HpaM for 5HPA and NADH were 45.4 μM and 37.8 μM, respectively. The genes hpaX, hpaD, and hpaF were found to encode 2,5DHP dioxygenase, N-formylmaleamic acid deformylase, and maleamate amidohydrolase, respectively; however, the three genes were not essential for 5HPA degradation in A. faecalis JQ135. Furthermore, the gene maiA, which encodes a maleic acid cis-trans isomerase, was essential for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135, indicating that it might be a key gene in the metabolism of pyridine derivatives. The genes and proteins identified in this study showed a novel degradation mechanism of pyridine derivatives.IMPORTANCE Unlike the benzene ring, the uneven distribution of the electron density of the pyridine ring influences the positional reactivity and interaction with enzymes; e.g., the ortho and para oxidations are more difficult than the meta oxidations. Hydroxylation is an important oxidation process for the pyridine derivative metabolism. In previous reports, the ortho hydroxylations of pyridine derivatives were catalyzed by multicomponent molybdenum-containing monooxygenases, while the meta hydroxylations were catalyzed by monocomponent FAD-dependent monooxygenases. This study identified the new monocomponent FAD-dependent monooxygenase HpaM that catalyzed the ortho decarboxylative hydroxylation of 5HPA. In addition, we found that the maiA gene coding for maleic acid cis-trans isomerase was pivotal for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135. This study provides novel insights into the microbial metabolism of pyridine derivatives.
Collapse
|
20
|
Guragain M, Jennings-Gee J, Cattelan N, Finger M, Conover MS, Hollis T, Deora R. The Transcriptional Regulator BpsR Controls the Growth of Bordetella bronchiseptica by Repressing Genes Involved in Nicotinic Acid Degradation. J Bacteriol 2018; 200:JB.00712-17. [PMID: 29581411 PMCID: PMC5971473 DOI: 10.1128/jb.00712-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Many of the pathogenic species of the genus Bordetella have an absolute requirement for nicotinic acid (NA) for laboratory growth. These Gram-negative bacteria also harbor a gene cluster homologous to the nic cluster of Pseudomonas putida which is involved in the aerobic degradation of NA and its transcriptional control. We report here that BpsR, a negative regulator of biofilm formation and Bps polysaccharide production, controls the growth of Bordetella bronchiseptica by repressing the expression of nic genes. The severe growth defect of the ΔbpsR strain in Stainer-Scholte medium was restored by supplementation with NA, which also functioned as an inducer of nic genes at low micromolar concentrations that are usually present in animals and humans. Purified BpsR protein bound to the nic promoter region, and its DNA binding activity was inhibited by 6-hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradative pathway. Reporter assays with the isogenic mutant derivative of the wild-type (WT) strain harboring deletion in nicA, which encodes a putative nicotinic acid hydroxylase responsible for conversion of NA to 6-HNA, showed that 6-HNA is the actual inducer of the nic genes in the bacterial cell. Gene expression profiling further showed that BpsR dually activated and repressed the expression of genes associated with pathogenesis, transcriptional regulation, metabolism, and other cellular processes. We discuss the implications of these findings with respect to the selection of pyridines such as NA and quinolinic acid for optimum bacterial growth depending on the ecological niche.IMPORTANCE BpsR, the previously described regulator of biofilm formation and Bps polysaccharide production, controls Bordetella bronchiseptica growth by regulating the expression of genes involved in the degradation of nicotinic acid (NA). 6-Hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradation pathway prevented BpsR from binding to DNA and was the actual in vivo inducer. We hypothesize that BpsR enables Bordetella bacteria to efficiently and selectively utilize NA for their survival depending on the environment in which they reside. The results reported herein lay the foundation for future investigations of how BpsR and the alteration of its activity by NA orchestrate the control of Bordetella growth, metabolism, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Manita Guragain
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jamie Jennings-Gee
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Natalia Cattelan
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata), Universidad Nacional de La Plata, La Plata, Argentina
| | - Mary Finger
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Matt S Conover
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Microbiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
21
|
Insights into the decarboxylative hydroxylation of salicylate catalyzed by the Flavin-dependent monooxygenase salicylate hydroxylase. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Brickman TJ, Armstrong SK. The Bordetella bronchiseptica nic locus encodes a nicotinic acid degradation pathway and the 6-hydroxynicotinate-responsive regulator BpsR. Mol Microbiol 2018; 108:397-409. [PMID: 29485696 DOI: 10.1111/mmi.13943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2018] [Indexed: 01/01/2023]
Abstract
The classical Bordetella species use amino acids as carbon sources and can catabolize organic acids and tricarboxylic acid cycle intermediates. They are also auxotrophic for nicotinamide adenine dinucleotide (NAD) pathway precursors such as nicotinic acid. Bordetellae have a putative nicotinate catabolism gene locus highly similar to that characterized in Pseudomonas putida KT2440. This study determined the distribution of the nic genes among Bordetella species and analyzed the regulation of this nicotinic acid degradation system. Transcription of the Bordetella bronchiseptica nicC gene was repressed by the NicR ortholog, BpsR, previously shown to regulate extracellular polysaccharide synthesis genes. nicC expression was derepressed by nicotinic acid or by the first product of the degradation pathway, 6-hydroxynicotinic acid, which was shown to be the inducer. Results using mutants with either a hyperactivated pathway or an inactivated pathway showed a marked effect on growth on nicotinic acid that indicated this degradation pathway influences NAD biosynthesis. Pathway dysregulation also affected Bordetella BvgAS-mediated virulence gene regulation, demonstrating that fluctuation of intracellular nicotinic acid pools impacts Bvg phase transition responses.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455-1507, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455-1507, USA
| |
Collapse
|