1
|
Cheng Y, Pang H, Zhang W. Exquisite Complex Reaction Cascade in the Natural 1,2,4-Triazine Assembly. J Am Chem Soc 2025; 147:12075-12081. [PMID: 40156852 PMCID: PMC11981835 DOI: 10.1021/jacs.4c18761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
1,2,4-Triazine ring is a scaffold widely found in biologically active compounds, but how nature makes it remains enigmatic. In this study, we unveil the complex enzymatic and nonenzymatic cascade reactions that assemble the 1,2,4-triazine moiety found in the structures of the natural products pseudoiodinine and toxoflavin. Through biochemical studies, isotope labeling, and the application of substrate analogues, we propose a plausible pathway for the 1,2,4-triazine assembly from a common precursor in riboflavin biosynthesis. This process involves four two-electron oxidation steps, C-N bond formation, decarboxylation, and the N-N bond forming step catalyzed by a metal-dependent WD40-repeat (WDR) protein. This study thus not only provides the first biocatalytic route for the 1,2,4-triazine assembly but also identifies a previously unrecognized catalytic role of a large WDR protein family.
Collapse
Affiliation(s)
- Yiyuan Cheng
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Haoran Pang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Zeng J, Iizaka Y, Ouchi Y, Otsuki K, Kikuchi T, Li W, Anzai Y. Inhibitory effects of reumycin produced by Streptomyces sp. TPMA0082 on virulence factors of Pseudomonas aeruginosa. J Nat Med 2025:10.1007/s11418-025-01902-w. [PMID: 40195206 DOI: 10.1007/s11418-025-01902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that causes a wide range of infections. The increasing multidrug-resistance of P. aeruginosa poses a critical challenge for medical care. P. aeruginosa employs virulence factors and biofilms to establish infections in humans and protect itself from environmental stress or antibiotics. These factors are regulated by a quorum sensing mechanism involving multiple regulatory systems that act interdependently through signaling molecules. Therefore, interference with quorum sensing systems can suppress the pathogenicity of P. aeruginosa. In this study, quorum sensing inhibitors were explored from secondary metabolites derived from 111 strains of actinomycetes by targeting the las system, which is thought to be upstream of the quorum sensing cascade in P. aeruginosa. As a result, reumycin was isolated from the culture broth of Streptomyces sp. TPMA0082. Reumycin, a molecule containing a pyrimidotriazine ring, inhibited the binding of the autoinducer to the LasR receptor in the las system, thereby suppressing the production of P. aeruginosa virulence factors, including pyocyanin, rhamnolipids, elastase, motility, and biofilms, without affecting bacterial growth. Toxoflavin, a reumycin derivative with a methyl group at the N1 position, exhibited strong antibacterial activity. Fervenulin, a reumycin derivative with a methyl group at the N8 position, had a negative impact on the logarithmic growth phase of the bacteria and exhibited lower inhibitory activity against virulence factor production compared to reumycin. These findings suggest that the position and number of methyl groups attached to the pyrimidotriazine structure significantly influence its biological activity, exerting distinct effects on quorum sensing inhibition and antibacterial activity.
Collapse
Affiliation(s)
- Jiahao Zeng
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yohei Iizaka
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| | - Yasuhiro Ouchi
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yojiro Anzai
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| |
Collapse
|
3
|
Justen SF, Fenwick MK, Axt KK, Cherry JA, Ealick SE, Philmus B. Crystal Structure, Modeling, and Identification of Key Residues Provide Insights into the Mechanism of the Key Toxoflavin Biosynthesis Protein ToxD. Biochemistry 2025; 64:1199-1211. [PMID: 40047534 PMCID: PMC11989309 DOI: 10.1021/acs.biochem.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Toxoflavin, a toxic secondary metabolite produced by a variety of bacteria, has been implicated as a causative agent in food poisoning and a virulence factor in phytopathogenic bacteria. This toxin is produced by genes encoded in the tox operon in Burkholderia glumae, in which the encoded protein, ToxD, was previously characterized as essential for toxoflavin production. To better understand the function of ToxD in toxoflavin biosynthesis and provide a basis for future work to develop inhibitors of ToxD, we undertook the identification of structurally and catalytically important amino acid residues through a combination of X-ray crystallography and site directed mutagenesis. We solved the structure of BgToxD, which crystallized as a dimer, to 1.8 Å resolution. We identified a citrate molecule in the putative active site. To investigate the role of individual residues, we used Pseudomonas protegens Pf-5, a BL1 plant protective bacterium known to produce toxoflavin, and created mutants in the ToxD-homologue PFL1035. Using a multiple sequence alignment and the BgToxD structure, we identified and explored the functional importance of 12 conserved residues in the putative active site. Eight variants of PFL1035 resulted in no observable production of toxoflavin. In contrast, four ToxD variants resulted in reduced but detectable toxoflavin production suggesting a nonessential role. The crystal structure and structural models of the substrate and intermediate bound enzyme provide a molecular interpretation for the mutagenesis data.
Collapse
Affiliation(s)
- Savannah F. Justen
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Michael K. Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kyle K. Axt
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - James A. Cherry
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Su L, Huber EM, Westphalen M, Gellner J, Bode E, Köbel T, Grün P, Alanjary MM, Glatter T, Cirnski K, Müller R, Schindler D, Groll M, Bode HB. Isofunctional but Structurally Different Methyltransferases for Dithiolopyrrolone Diversification. Angew Chem Int Ed Engl 2024; 63:e202410799. [PMID: 39185606 DOI: 10.1002/anie.202410799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Dithiolopyrrolone (DTP) natural products are produced by several different bacteria and have potent antibacterial, antifungal and anticancer activities. While the amide of their DTP core can be methylated to fine-tune bioactivity, the enzyme responsible for the amide N-methylation has remained elusive in most taxa. Here, we identified the amide methyltransferase XrdM that is responsible for xenorhabdin (XRD) methylation in Xenorhabdus doucetiae but encoded outside of the XRD gene cluster. XrdM turned out to be isofunctional with the recently reported methyltransferase DtpM, that is involved in the biosynthesis of the DTP thiolutin, although its X-ray structure is unrelated to that of DtpM. To investigate the structural basis for ligand binding in both enzymes, we used X-ray crystallography, modeling, site-directed mutagenesis, and kinetic activity assays. Our study expands the limited knowledge of post-non-ribosomal peptide synthetase (NRPS) amide methylation in DTP biosynthesis and reveals an example of convergent evolution of two structurally completely different enzymes for the same reaction in different organisms.
Collapse
Affiliation(s)
| | - Eva M Huber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, 85748, Garching, Germany
| | - Margaretha Westphalen
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jonas Gellner
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, 85748, Garching, Germany
| | - Edna Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Tania Köbel
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Max Planck Biofoundry MaxGENESYS, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Peter Grün
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Mohammad M Alanjary
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, PB 6708, Netherlands
| | - Timo Glatter
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Katarina Cirnski
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centrefor Infection Research(HZI), Saarland University, 66123, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover, 38124, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centrefor Infection Research(HZI), Saarland University, 66123, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover, 38124, Braunschweig, Germany
| | - Daniel Schindler
- Max Planck Biofoundry MaxGENESYS, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Michael Groll
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies, 85748, Garching, Germany
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Chemical Biology, Department of Chemistry, Philipps University of Marburg, 35043, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt am, Main, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, 35043, Marburg, Germany
| |
Collapse
|
5
|
Lloyd MD, Gregory KS, Acharya KR. Functional implications of unusual NOS and SONOS covalent linkages found in proteins. Chem Commun (Camb) 2024; 60:9463-9471. [PMID: 39109843 DOI: 10.1039/d4cc03191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The tertiary and quaternary structures of many proteins are stabilized by strong covalent forces, of which disulfide bonds are the most well known. A new type of intramolecular and intermolecular covalent bond has been recently reported, consisting of the Lys and Cys side-chains linked by an oxygen atom (NOS). These post-translational modifications are widely distributed amongst proteins, and are formed under oxidative conditions. Similar linkages are observed during antibiotic biosynthesis, where hydroxylamine intermediates are tethered to the sulfur of enzyme active site Cys residues. These linkages open the way to understanding protein structure and function, give new insights into enzyme catalysis and natural product biosynthesis, and offer new strategies for drug design.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Kyle S Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - K Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
6
|
Zotchev SB. Unlocking the potential of bacterial endophytes from medicinal plants for drug discovery. Microb Biotechnol 2024; 17:e14382. [PMID: 38345183 PMCID: PMC10884874 DOI: 10.1111/1751-7915.14382] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 02/24/2024] Open
Abstract
Among the plant-associated microorganisms, the so-called endophytes continue to attract much attention because of their ability not only to protect host plants from biotic and abiotic stress factors, but also the potential to produce bioactive secondary metabolites. The latter property can elicit growth-promoting effects on plants, as well as boost the production of plant-specific secondary metabolites with valuable pharmacological properties. In addition, endophyte-derived secondary metabolites may be a rich source for the discovery of drugs to treat various diseases, including infections and cancer. However, the full potential of endophytes to produce bioactive secondary metabolites is often not revealed upon conventional cultivation in the laboratory. New advances in genomics and metabolic engineering offer exciting opportunities for the exploration and exploitation of endophytes' biosynthetic potential. This review focuses on bacterial endophytes of medicinal plants, some of their secondary metabolites and recent advances in deciphering their biosynthesis. The latter may assist in genetic engineering efforts aimed at the discovery of novel bioactive compounds with the potential to be developed into drugs.
Collapse
Affiliation(s)
- Sergey B. Zotchev
- Division of Pharmacognosy, Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| |
Collapse
|
7
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
Peng J, Lelis T, Chen R, Barphagha I, Osti S, Ham JH. tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system. MOLECULAR PLANT PATHOLOGY 2020; 21:1042-1054. [PMID: 32608174 PMCID: PMC7368122 DOI: 10.1111/mpp.12947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/23/2020] [Accepted: 05/04/2020] [Indexed: 05/05/2023]
Abstract
The pathogenesis of the rice pathogenic bacterium Burkholderia glumae is under the tight regulation of the tofI/tofR quorum-sensing (QS) system. tepR, encoding a group I bacterial enhancer-binding protein, negatively regulates the production of toxoflavin, the phytotoxin acting as a major virulence factor in B. glumae. In this study, through a transcriptomic analysis, we identified the genes that were modulated by tepR and/or the tofI/tofR QS system. More than half of the differentially expressed genes, including the genes for the biosynthesis and transport of toxoflavin, were significantly more highly expressed in the ΔtepR mutant but less expressed in the ΔtofI-tofR (tofI/tofR QS-defective) mutant. In consonance with the transcriptome data, other virulence-related functions of B. glumae, extracellular protease activity and flagellum-dependent motility, were also negatively regulated by tepR, and this negative regulatory function of tepR was dependent on the IclR-type transcriptional regulator gene qsmR. Likewise, the ΔtepR mutant exhibited a higher level of heat tolerance in congruence with the higher transcription levels of heat shock protein genes in the mutant. Interestingly, tepR also exhibited its positive regulatory function on a previously uncharacterized type VI secretion system (denoted as BgT6SS-1). The survival of the both ΔtepR and ΔtssD (BgT6SS-1-defective) mutants was significantly compromised compared to the wild-type parent strain 336gr-1 in the presence of the natural rice-inhabiting bacterium, Pantoea sp. RSPAM1. Taken together, this study revealed pivotal regulatory roles of tepR in orchestrating multiple biological functions of B. glumae, including pathogenesis, heat tolerance, and bacterial interspecies competition.
Collapse
Affiliation(s)
- Jingyu Peng
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Tiago Lelis
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Tropical Research and Education CenterInstitute of Food and Agriculture SciencesUniversity of FloridaHomesteadFLUSA
| | - Ruoxi Chen
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
1501 Capitol AvenueSacramentoCA95814USA
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Surendra Osti
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of Agricultural Economics and AgribusinessLouisiana State UniversityBaton RougeLA70803USA
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
| |
Collapse
|
9
|
Hussain A, Shahbaz M, Tariq M, Ibrahim M, Hong X, Naeem F, Khalid Z, Raza HMZ, Bo Z, Bin L. Genome re-seqeunce and analysis of Burkholderia glumae strain AU6208 and evidence of toxoflavin: A potential bacterial toxin. Comput Biol Chem 2020; 86:107245. [PMID: 32172200 DOI: 10.1016/j.compbiolchem.2020.107245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022]
Abstract
Burkholderia glumae, the primary causative agent of bacterial panicle blight in rice, has been reported as an opportunistic pathogen in patients with chronic infections. This study aimed to re-sequence the clinical isolate B. glumae strain AU6208 and comparatively analyze its genome using B. glumae strain BGR1 from rice plant as the reference. Re-sequencing results revealed that the genome of strain AU6208 comprised 96 contigs corresponding to a 6.1 Mbp genome of the strain AU6208, with 5322 coding sequences and 68.2 % GC content; this is much larger compared to the genome previously sequenced by us and described by Seo et al (2015), which was reported to be 4.1 Mbp comprising >1200 contigs, 4361 coding sequences, and 67.31 % GC content. Moreover, this updated genome shares >80 % identity to the 7.2 Mbp genome of BGR1, which encodes 6491 coding sequences and has 68.3 % GC content. Further computational analysis revealed that the strain AU6208 encodes several bacteriocin biosynthesis genes, antibiotic, as well as virulent genes such as toxoflavin genes, which included 425 specialty genes and 12 toxoflavin genes. Upon further characterization, 12 toxoflavins (ToxA, B, C, D, E, F, G, H, I, J, TofI, and TofR) were found in AU6208 with 70-100 % sequence, family, and domain similarity with that of BGR1. Upon comparison with BGR1, the structural characterizations of selected toxoflavin genes (ToxB, ToxC, ToxG, H, and TofI) revealed variations in 2D and 3D structures such as differences in α-helix, β-sheets, loops, physiological properties of proteins, RMSD values, etc. These variations may play significant role in different mode of action in different hosts thereby indicating that in addition to their respective hosts, toxoflavins could also contribute to exploit other hosts across the kingdom. In addition to understanding the epidemiology of strain AU6208, this updated genomics data will also unfold the pathogenicity of bacteria in diversity of various hosts and anti-virulence.
Collapse
Affiliation(s)
- Annam Hussain
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Maham Shahbaz
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Maria Tariq
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Muhammad Ibrahim
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Xianxian Hong
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Faryal Naeem
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Zunera Khalid
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Hafiz Muhammad Zeeshan Raza
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Zhu Bo
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Li Bin
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Moon K, Xu F, Zhang C, Seyedsayamdost MR. Bioactivity-HiTES Unveils Cryptic Antibiotics Encoded in Actinomycete Bacteria. ACS Chem Biol 2019; 14:767-774. [PMID: 30830740 DOI: 10.1021/acschembio.9b00049] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria harbor an immense reservoir of potentially new and therapeutic small molecules in the form of "silent" biosynthetic gene clusters (BGCs). These BGCs can be identified bioinformatically but are sparingly expressed under normal laboratory growth conditions, or not at all, and therefore do not produce significant levels of the corresponding small molecule product. Several methods have been developed for activating silent BGCs. A major limitation for nearly all methods is that they require genetic procedures and/or do not report on the bioactivity of the cryptic metabolite. We herein report "Bioactivty-HiTES", an approach that links the bioactivity of cryptic metabolites to their induction while at the same time obviating the need for genetic manipulations. Using this method, we detected induction of cryptic antibiotics in three actinomycete strains that were tested. Follow-up studies in one case allowed us to structurally elucidate two cryptic metabolites, elicited by the β-blocker atenolol in Streptomyces hiroshimensis, with selective growth-inhibitory activity against Gram-negative bacteria, notably Escherichia coli and Acinetobacter baumannii. Atenolol turned out to be a global elicitor of secondary metabolism, and characterization of additional cryptic metabolites led to the discovery of a novel naphthoquinone epoxide. Bioactivity-HiTES is a general, widely applicable procedure that will be useful in identifying cryptic bioactive metabolites in the future.
Collapse
Affiliation(s)
- Kyuho Moon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Fei Xu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Chen Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Su C, Yan Y, Guo X, Luo J, Liu C, Zhang Z, Xiang WS, Huang SX. Characterization of the N-methyltransferases involved in the biosynthesis of toxoflavin, fervenulin and reumycin from Streptomyces hiroshimensis ATCC53615. Org Biomol Chem 2019; 17:477-481. [PMID: 30565634 DOI: 10.1039/c8ob02847h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Toxoflavin (1), fervenulin (2), and reumycin (3), known to be produced by plant pathogen Burkholderia glumae BGR1, are structurally related 7-azapteridine antibiotics. Previous biosynthetic studies revealed that N-methyltransferase ToxA from B. glumae BGR1 catalyzed the sequential methylation at N6 and N1 in pyrimido[5,4-e]-as-triazine-5,7(6H,8H)-dione (4) to generate 1. However, the N8 methylation of 4 in the biosynthesis of fervenulin remains unclear. To explore the N-methyltransferases required for the biosynthesis of 1 and 2, we identified and characterized the fervenulin and toxoflavin biosynthetic gene clusters in S. hiroshimensis ATCC53615. On the basis of the structures of intermediates accumulated from the four N-methyltransferase gene inactivation mutants and systematic enzymatic methylation reactions, the tailoring steps for the methylation order in the biosynthesis of 1 and 2 were proposed. The N-methylation order and routes for the biosynthesis of fervenulin and toxoflavin in S. hiroshimensis are more complex and represent an obvious departure from those in B. glumae BGR1.
Collapse
Affiliation(s)
- Can Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
13
|
Fenwick MK, Ealick SE. Towards the structural characterization of the human methyltransferome. Curr Opin Struct Biol 2018; 53:12-21. [DOI: 10.1016/j.sbi.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
|
14
|
Fenwick MK, Almabruk KH, Ealick SE, Begley TP, Philmus B. Biochemical Characterization and Structural Basis of Reactivity and Regioselectivity Differences between Burkholderia thailandensis and Burkholderia glumae 1,6-Didesmethyltoxoflavin N-Methyltransferase. Biochemistry 2017; 56:3934-3944. [PMID: 28665591 DOI: 10.1021/acs.biochem.7b00476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia glumae converts the guanine base of guanosine triphosphate into an azapteridine and methylates both the pyrimidine and triazine rings to make toxoflavin. Strains of Burkholderia thailandensis and Burkholderia pseudomallei have a gene cluster encoding seven putative biosynthetic enzymes that resembles the toxoflavin gene cluster. Four of the enzymes are similar in sequence to BgToxBCDE, which have been proposed to make 1,6-didesmethyltoxoflavin (1,6-DDMT). One of the remaining enzymes, BthII1283 in B. thailandensis E264, is a predicted S-adenosylmethionine (SAM)-dependent N-methyltransferase that shows a low level of sequence identity to BgToxA, which sequentially methylates N6 and N1 of 1,6-DDMT to form toxoflavin. Here we show that, unlike BgToxA, BthII1283 catalyzes a single methyl transfer to N1 of 1,6-DDMT in vitro. In addition, we investigated the differences in reactivity and regioselectivity by determining crystal structures of BthII1283 with bound S-adenosylhomocysteine (SAH) or 1,6-DDMT and SAH. BthII1283 contains a class I methyltransferase fold and three unique extensions used for 1,6-DDMT recognition. The active site structure suggests that 1,6-DDMT is bound in a reduced form. The plane of the azapteridine ring system is orthogonal to its orientation in BgToxA. In BthII1283, the modeled SAM methyl group is directed toward the p orbital of N1, whereas in BgToxA, it is first directed toward an sp2 orbital of N6 and then toward an sp2 orbital of N1 after planar rotation of the azapteridine ring system. Furthermore, in BthII1283, N1 is hydrogen bonded to a histidine residue whereas BgToxA does not supply an obvious basic residue for either N6 or N1 methylation.
Collapse
Affiliation(s)
- Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Khaled H Almabruk
- College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Benjamin Philmus
- College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
15
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|