1
|
Scaletti Hutchinson E, Martínez-Carranza M, Fu B, Mäler L, Stenmark P. Structure and membrane interactions of Arabidopsis thaliana DGD2, a glycosyltransferase in the chloroplast membrane. J Biol Chem 2025; 301:108431. [PMID: 40120685 PMCID: PMC12022483 DOI: 10.1016/j.jbc.2025.108431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Galactolipids are characteristic lipids of the photosynthesis membranes of higher plants and cyanobacteria. Due to their close relationship to the stability of the photosystem protein complexes, the biogenesis of galactolipids has been intensively studied on the genetic and molecular levels. There are two major types of galactolipids in chloroplastic membranes: monogalactosyldiacylglycerol and digalactosyldiacylglycerol (DGDG). Under phosphate-limiting conditions, the amount of DGDG increases dramatically to allow for phosphate salvage from phospholipids. In Arabidopsis thaliana, the membrane-associated glycosyltransferase digalactosyldiacylglycerol synthase 2 (atDGD2) is highly responsive to phosphate starvation and is significantly upregulated during such conditions. The lipid galactosylation reactions are also fundamentally interesting as they require a catalyst that is capable of bringing a hydrophilic and lipophilic substrate together at the solution-membrane phase border. Here, we present the X-ray crystal structure of atDGD2, which is the first reported DGDG synthase structure. AtDGD2 is most structurally similar to functionally unrelated GT-B enzymes. Interestingly, in spite of significant donor substrate binding differences, we identified four amino acids (Gly22, His151, Lys243, and Glu321, atDGD2 numbering) which were entirely conserved between the structurally similar enzymes. We also investigated the membrane interaction kinetics and membrane anchoring mechanism of atDGD2. This demonstrated that atDGD2 is membrane-bound but also showed that membrane binding is highly dynamic. Furthermore, our structural information in context of previous biophysical studies highlights regions of the enzyme exhibiting a high degree of structural plasticity, which we propose to be important for allowing atDGD2 to quickly adapt its activity based on the membrane lipid environment.
Collapse
Affiliation(s)
| | | | - Biao Fu
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
2
|
Rocha J, Nitenberg M, Girard-Egrot A, Jouhet J, Maréchal E, Block MA, Breton C. Do Galactolipid Synthases Play a Key Role in the Biogenesis of Chloroplast Membranes of Higher Plants? FRONTIERS IN PLANT SCIENCE 2018; 9:126. [PMID: 29472943 PMCID: PMC5809773 DOI: 10.3389/fpls.2018.00126] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 05/17/2023]
Abstract
A unique feature of chloroplasts is their high content of the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which constitute up to 80% of their lipids. These galactolipids are synthesized in the chloroplast envelope membrane through the concerted action of galactosyltransferases, the so-called 'MGDG synthases (MGDs)' and 'DGDG synthases (DGDs),' which use uridine diphosphate (UDP)-galactose as donor. In Arabidopsis leaves, under standard conditions, the enzymes MGD1 and DGD1 provide the bulk of galactolipids, necessary for the massive expansion of thylakoid membranes. Under phosphate limited conditions, plants activate another pathway involving MGD2/MGD3 and DGD2 to provide additional DGDG that is exported to extraplastidial membranes where they partly replace phospholipids, a phosphate-saving mechanism in plants. A third enzyme system, which relies on the UDP-Gal-independent GGGT (also called SFR2 for SENSITIVE TO FREEZING 2), can be activated in response to a freezing stress. The biosynthesis of galactolipids by these multiple enzyme sets must be tightly regulated to meet the cellular demand in response to changing environmental conditions. The cooperation between MGD and DGD enzymes with a possible substrate channeling from diacylglycerol to MGDG and DGDG is supported by biochemical and biophysical studies and mutant analyses reviewed herein. The fine-tuning of MGDG to DGDG ratio, which allows the reversible transition from the hexagonal II to lamellar α phase of the lipid bilayer, could be a key factor in thylakoid biogenesis.
Collapse
Affiliation(s)
- Joana Rocha
- Université Grenoble Alpes, Grenoble, France
- CERMAV, CNRS, Grenoble, France
| | - Milène Nitenberg
- Université Grenoble Alpes, Grenoble, France
- CERMAV, CNRS, Grenoble, France
| | | | - Juliette Jouhet
- Université Grenoble Alpes, Grenoble, France
- LPCV, UMR 5168 CNRS/CEA/INRA/UGA, Université Grenoble Alpes, Grenoble, France
| | - Eric Maréchal
- Université Grenoble Alpes, Grenoble, France
- LPCV, UMR 5168 CNRS/CEA/INRA/UGA, Université Grenoble Alpes, Grenoble, France
| | - Maryse A. Block
- Université Grenoble Alpes, Grenoble, France
- LPCV, UMR 5168 CNRS/CEA/INRA/UGA, Université Grenoble Alpes, Grenoble, France
| | - Christelle Breton
- Université Grenoble Alpes, Grenoble, France
- CERMAV, CNRS, Grenoble, France
- *Correspondence: Christelle Breton,
| |
Collapse
|