1
|
Sato N, Ikemura E, Uemura M, Awai K. Genomic and biochemical analyses of lipid biosynthesis in Cyanophora paradoxa: limited role of the chloroplast in fatty acid synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:532-545. [PMID: 39377269 PMCID: PMC11714747 DOI: 10.1093/jxb/erae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Archaeplastida, a group of photosynthetic organisms with primary plastids, consists of green algae (plus land plants), red algae, and glaucophytes. In contrast to green and red algae, information on lipids and lipid biosynthesis is still incomplete in the glaucophytes. The chloroplast is the site of photosynthesis and fatty acid synthesis in all photosynthetic organisms known to date. However, the genomic data of the glaucophyte Cyanophora paradoxa indicated the lack of acetyl-CoA carboxylase and most components of fatty acid synthase in the chloroplast. Instead, multifunctional fatty acid synthase and acetyl-CoA carboxylase are likely to reside in the cytosol. To examine this hypothesis, we measured fatty acid synthesis in isolated chloroplasts and whole cells using stable isotope labeling. The chloroplasts had very low fatty acid synthesis activity, if any. Most processes of fatty acid synthesis, including elongation and desaturation, must be performed within the cytosol, and the fatty acids imported into the chloroplasts are assembled into the chloroplast lipids by the enzymes common to other algae and plants. Cyanophora paradoxa is a rare organism in which fatty acid synthesis and photosynthesis are not tightly linked. This could question the common origin of these two biosynthetic processes in Archaeplastida.
Collapse
Affiliation(s)
- Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Eri Ikemura
- Graduate School of Integrated Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mana Uemura
- Graduate School of Integrated Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | - Koichiro Awai
- Graduate School of Integrated Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Electronics, Shizuoka University, Chuo-ku, Hamamatsu 432-8561, Japan
| |
Collapse
|
2
|
Cho Y, Tsuchiya S, Omura T, Koike K, Konoki K, Oshima Y, Yotsu-Yamashita M. Metabolic inhibitor induces dynamic changes in saxitoxin biosynthesis and metabolism in the dinoflagellate Alexandrium pacificum (Group IV) under in vivo labeling condition. HARMFUL ALGAE 2023; 122:102372. [PMID: 36754461 DOI: 10.1016/j.hal.2022.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
In paralytic shellfish toxin-producing dinoflagellates, intracellular levels of saxitoxin and its analogues (STXs) are controlled by a balance between degradation and biosynthesis in response to marine environmental fluctuations and stresses. The purpose of this study was to demonstrate the utility of statistical analysis of in vivo labeling data for the dynamic analysis of variations in toxin production under stress. A toxic strain of the dinoflagellate Alexandrium pacificum (Group IV) was cultured in colchicine-containing 15N-labeled sodium nitrate-medium and metabolite levels were analyzed over time by liquid chromatography-mass spectrometry. Quantitative values of all isotopomers of precursor amino acids, biosynthetic intermediates, and major STXs were subjected to statistical analysis. The decrease of the nitrogen incorporation rates for all compounds suggested that colchicine decreased nitrate assimilation upstream of glutamate biosynthesis. In colchicine-treated cultures, the per-cell content of total STX analogues did not change significantly over time; however, the production rate of each pathway varied greatly. De novo STX biosynthesis was decreased by colchicine until Day 3, while the salvage pathway was not. Subsequently, biosynthesis by both pathways was enhanced. This analysis of dynamic metabolism provides new insights into the complex mechanisms regulating STX metabolism in dinoflagellates.
Collapse
Affiliation(s)
- Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| | - Shigeki Tsuchiya
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Takuo Omura
- Laboratory of Aquatic Science Consultant Co., LTD. 2-30-17, Higashikamata, Ota-ku, Tokyo 144-0031, Japan
| | - Kazuhiko Koike
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yasukatsu Oshima
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
3
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Sato N. Are Cyanobacteria an Ancestor of Chloroplasts or Just One of the Gene Donors for Plants and Algae? Genes (Basel) 2021; 12:genes12060823. [PMID: 34071987 PMCID: PMC8227023 DOI: 10.3390/genes12060823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/04/2022] Open
Abstract
Chloroplasts of plants and algae are currently believed to originate from a cyanobacterial endosymbiont, mainly based on the shared proteins involved in the oxygenic photosynthesis and gene expression system. The phylogenetic relationship between the chloroplast and cyanobacterial genomes was important evidence for the notion that chloroplasts originated from cyanobacterial endosymbiosis. However, studies in the post-genomic era revealed that various substances (glycolipids, peptidoglycan, etc.) shared by cyanobacteria and chloroplasts are synthesized by different pathways or phylogenetically unrelated enzymes. Membranes and genomes are essential components of a cell (or an organelle), but the origins of these turned out to be different. Besides, phylogenetic trees of chloroplast-encoded genes suggest an alternative possibility that chloroplast genes could be acquired from at least three different lineages of cyanobacteria. We have to seriously examine that the chloroplast genome might be chimeric due to various independent gene flows from cyanobacteria. Chloroplast formation could be more complex than a single event of cyanobacterial endosymbiosis. I present the “host-directed chloroplast formation” hypothesis, in which the eukaryotic host cell that had acquired glycolipid synthesis genes as an adaptation to phosphate limitation facilitated chloroplast formation by providing glycolipid-based membranes (pre-adaptation). The origins of the membranes and the genome could be different, and the origin of the genome could be complex.
Collapse
Affiliation(s)
- Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
5
|
Sato N, Toyoshima M. Dynamism of Metabolic Carbon Flow of Starch and Lipids in Chlamydomonas debaryana. FRONTIERS IN PLANT SCIENCE 2021; 12:646498. [PMID: 33868347 PMCID: PMC8047662 DOI: 10.3389/fpls.2021.646498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/08/2021] [Indexed: 06/01/2023]
Abstract
Microalgae have the potential to recycle CO2 as starch and triacylglycerol (TAG), which provide alternative source of biofuel and high added-value chemicals. Starch accumulates in the chloroplast, whereas TAG accumulates in the cytoplasmic lipid droplets (LD). Preferential accumulation of starch or TAG may be achieved by switching intracellular metabolic carbon flow, but our knowledge on this control remains limited. Are these two products mutually exclusive? Or, does starch act as a precursor to TAG synthesis, or vice versa? To answer these questions, we analyzed carbon flow in starch and lipids using a stable isotope 13C in Chlamydomonas debaryana NIES-2212, which accumulates, without nutrient limitation, starch in the exponential growth phase and TAG in the stationary phase. Pulse labeling experiments as well as pulse labeling and chase experiments were conducted, and then, gas chromatography-mass spectrometry (GC-MS) analysis was performed on starch-derived glucose and lipid-bound fatty acids. We exploited the previously developed method of isotopomer analysis to estimate the proportion of various pools with different isotopic abundance. Starch turned over rapidly to provide carbon for the synthesis of fatty acids in the exponential phase cells. Most fatty acids showed rapid and slow components of metabolism, whereas oleic acid decayed according to a single exponential curve. Highly labeled population of fatty acids that accumulated during the initial labeling decreased rapidly, and replaced by low abundance population during the chase time, indicating that highly labeled fatty acids were degraded and the resulting carbons were re-used in the re-synthesis with about 9-fold unlabeled, newly fixed carbons. Elongation of C16-C18 acids in vivo was indicated by partially labeled C18 acids. The accumulation of TAG in the stationary growth phase was accounted for by both de novo synthesis and remodeling of membrane lipids. These results suggest that de novo synthesis of starch and TAG was rapid and transient, and also almost independent to each other, but there is a pool of starch quickly turning over for the synthesis of fatty acids. Fatty acids were also subject to re-synthesis. Evidence was also provided for remodeling of lipids, namely, re-use of acyl groups in polar lipids for TAG synthesis.
Collapse
|
6
|
Sato N, Yoshitomi T, Mori-Moriyama N. Characterization and Biosynthesis of Lipids in Paulinella micropora MYN1: Evidence for Efficient Integration of Chromatophores into Cellular Lipid Metabolism. PLANT & CELL PHYSIOLOGY 2020; 61:869-881. [PMID: 32044983 DOI: 10.1093/pcp/pcaa011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The chromatophores found in the cells of photosynthetic Paulinella species, once believed to be endosymbiotic cyanobacteria, are photosynthetic organelles that are distinct from chloroplasts. The chromatophore genome is similar to the genomes of α-cyanobacteria and encodes about 1,000 genes. Therefore, the chromatophore is an intriguing model of organelle formation. In this study, we analyzed the lipids of Paulinella micropora MYN1 to verify that this organism is a composite of cyanobacterial descendants and a heterotrophic protist. We detected glycolipids and phospholipids, as well as a betaine lipid diacylglyceryl-3-O-carboxyhydroxymethylcholine, previously detected in many marine algae. Cholesterol was the only sterol component detected, suggesting that the host cell is similar to animal cells. The glycolipids, presumably present in the chromatophores, contained mainly C16 fatty acids, whereas other classes of lipids, presumably present in the other compartments, were abundant in C20 and C22 polyunsaturated fatty acids. This suggests that chromatophores are metabolically distinct from the rest of the cell. Metabolic studies using isotopically labeled substrates showed that different fatty acids are synthesized in the chromatophore and the cytosol, which is consistent with the presence of both type I and type II fatty acid synthases, supposedly present in the cytosol and the chromatophore, respectively. Nevertheless, rapid labeling of the fatty acids in triacylglycerol and phosphatidylcholine by photosynthetically fixed carbon suggested that the chromatophores efficiently provide metabolites to the host. The metabolic and ultrastructural evidence suggests that chromatophores are tightly integrated into the whole cellular metabolism.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Natsumi Mori-Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| |
Collapse
|
7
|
Cho Y, Tsuchiya S, Omura T, Koike K, Oikawa H, Konoki K, Oshima Y, Yotsu-Yamashita M. Metabolomic study of saxitoxin analogues and biosynthetic intermediates in dinoflagellates using 15N-labelled sodium nitrate as a nitrogen source. Sci Rep 2019; 9:3460. [PMID: 30837523 PMCID: PMC6401167 DOI: 10.1038/s41598-019-39708-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/30/2019] [Indexed: 12/27/2022] Open
Abstract
A stable-isotope-labelling method using 15N-labelled sodium nitrate as a nitrogen source was developed for the toxic dinoflagellate Alexandrium catenella. The labelled saxitoxin analogues (STXs), their precursor, and the biosynthetic intermediates were analyzed by column-switching high-resolution hydrophilic interaction liquid chromatography with mass spectrometry. The low contents on Day 0, high 15N incorporation % of Int-C'2 and Int-E' suggested that their turn-over rates are high and that the sizes of the pool of these compounds are smaller than those of the other intermediates. The experimentally determined isotopomer distributions showed that arginine, Int-C'2, 11-hydroxy-Int-C'2, Int-E', GTX5, GTX4, C1, and C2, each existed as a combination of three populations that consisted of the non-labelled molecules and the labelled isotopomers representing molecules newly synthesized by incorporation of 15N assimilated from the medium with two different incorporation rates. The order of 15N incorporation % values of the labelled populations predicted by this model largely agreed with the proposed biosynthetic route. The stable-isotope-labelling method will be useful for understanding the complex mechanism of nitrogen flux in STX-producing dinoflagellates.
Collapse
Affiliation(s)
- Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
| | - Shigeki Tsuchiya
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Takuo Omura
- Laboratory of Aquatic Science Consultant Co., LTD., 2-30-17, Higashikamata, Ota-ku, Tokyo, 144-0031, Japan
| | - Kazuhiko Koike
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Hiroshi Oikawa
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Yasukatsu Oshima
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
8
|
Mori N, Moriyama T, Sato N. Uncommon properties of lipid biosynthesis of isolated plastids in the unicellular red alga Cyanidioschyzon merolae. FEBS Open Bio 2018; 9:114-128. [PMID: 30652079 PMCID: PMC6325583 DOI: 10.1002/2211-5463.12551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Red algae are a large group of photosynthetic eukaryotes that diverged from green algae over one billion years ago, and have various traits distinct from those of both green algae and land plants. Although most red algae are marine species (both unicellular and macrophytic), the Cyanidiales class of red algae includes unicellular species which live in hot springs, such as Cyanidioschyzon merolae, which is a model species for biochemical and molecular biological studies. Lipid metabolism in red algae has previously been studied in intact cells. Here, we present the results of radiolabeling and stable isotope labeling experiments in intact plastids isolated from the unicellular red alga C. merolae. We focused on two uncommon features: First, the galactose moiety of monogalactosyldiacylglycerol was efficiently labeled with bicarbonate, indicating that an unknown pathway for providing UDP-galactose exists within the plastid. Second, saturated fatty acids, namely, palmitic and stearic acids, were the sole products of fatty acid synthesis in the plastid, and they were efficiently exported. This finding suggests that the endoplasmic reticulum is the sole site of desaturation. We present a general principle of red algal lipid biosynthesis, namely, 'indigenous C18 fatty acids are neither desaturated nor directly utilized within the plastid'. We believe that this is valid in both C. merolae lacking polyunsaturated fatty acids and marine red algae with a high content of arachidonic and eicosapentaenoic acids.
Collapse
Affiliation(s)
- Natsumi Mori
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| | - Takashi Moriyama
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| | - Naoki Sato
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| |
Collapse
|
9
|
Apdila ET, Awai K. Configuration of the sugar head of glycolipids in thylakoid membranes. Genes Genet Syst 2018; 92:235-242. [PMID: 29343668 DOI: 10.1266/ggs.17-00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glycolipids constitute the majority of membrane components in oxygenic photosynthetic organisms, whereas they are minor lipids in other organisms. In cyanobacteria, three glycolipids comprise ~90 mol% of the total lipids in thylakoid membranes, where photosynthetic electron transport occurs. Among these glycolipids, 80 mol% are galactolipids (monogalactosyldiacylglycerol and digalactosyldiacylglycerol). Galactolipids are well conserved in oxygenic photosynthetic organisms and are believed to be essential for the integrity of the membrane system. It remains unclear, however, which part(s) of the galactolipid structure is the key factor for their function, e.g., the sugar moiety and/or the anomeric configuration. To address this issue, several bacterial membrane glycolipid synthase genes have been introduced into cyanobacteria to test for complementation of knocked-out genes involved in galactolipid biosynthesis. In this review, we summarize recent advances in the analyses of sugar species and configurations of glycolipids heterologously synthesized in the thylakoid membrane and discuss their functional importance.
Collapse
Affiliation(s)
| | - Koichiro Awai
- Faculty of Science, Shizuoka University.,Research Institute of Electronics, Shizuoka University.,JST, CREST
| |
Collapse
|