1
|
Walker MG, Mendez CG, Ho AN, Czarny RS, Rappé AK, Ho PS. Design of a halogen bond catalyzed DNA endonuclease. Proc Natl Acad Sci U S A 2025; 122:e2500099122. [PMID: 40168119 PMCID: PMC12002254 DOI: 10.1073/pnas.2500099122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
In this study, we expand the repertoire of biological catalysts by showing that a halogen bond (X-bond) can functionally replace the magnesium (Mg2+) cofactor in mouse endonuclease G (mEndoG). We mutated the metal coordinating glutamate E136 in mEndoG to a meta-halotyrosine (mXY, X = chlorine or iodine) to form a mXY-mEndoG construct that is both acid and base catalyzed. Under basic conditions, the enzyme is inactivated by the metal chelator ethylene diamine tetraacetic acid (EDTA), indicating that the halogen substituent facilitates deprotonation of the tyrosyl hydroxyl group, allowing recruitment of Mg2+ to restore the metal-dependent catalytic center. At low pHs, we observe that the mXY-mEndoG is resistant to EDTA inactivation and that the iodinated constructed is significantly more active than the chlorinated analogue. These results implicate a hydrogen bond (H-bond) enhanced X-bond as the catalyst in the mXY-mEndoG, with asparagine N103 serving as the H-bond donor that communicates the protonation state of histidine H104 to the halogen. This model is supported by mutation studies and electrostatic potential (ESP) calculations on models for the protonated and unprotonated mXY···N103···H104 system compared to the Mg2+ coordination complex of the wild type. Thus, we have designed and engineered an enzyme that utilizes an unnatural catalyst in its active site-a catalytic X-bonding enzyme, or cX-Zyme-by controverting what constitutes a metal catalyst in biochemistry.
Collapse
Affiliation(s)
- Margaret G. Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523-1870
| | - Cesar Gustavo Mendez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523-1870
| | - Alexander N. Ho
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523-1870
| | - Ryan S. Czarny
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523-1870
| | - Anthony K. Rappé
- Department of Chemistry, Colorado State University, Fort Collins, CO80523-1872
| | - Pui Shing Ho
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523-1870
| |
Collapse
|
2
|
Developing Community Resources for Nucleic Acid Structures. Life (Basel) 2022; 12:life12040540. [PMID: 35455031 PMCID: PMC9031032 DOI: 10.3390/life12040540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 01/14/2023] Open
Abstract
In this review, we describe the creation of the Nucleic Acid Database (NDB) at Rutgers University and how it became a testbed for the current infrastructure of the RCSB Protein Data Bank. We describe some of the special features of the NDB and how it has been used to enable research. Plans for the next phase as the Nucleic Acid Knowledgebase (NAKB) are summarized.
Collapse
|
3
|
Ramakrishnan S, Subramaniam S, Kielar C, Grundmeier G, Stewart AF, Keller A. Protein-Assisted Room-Temperature Assembly of Rigid, Immobile Holliday Junctions and Hierarchical DNA Nanostructures. Molecules 2020; 25:molecules25215099. [PMID: 33153073 PMCID: PMC7663122 DOI: 10.3390/molecules25215099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
Immobile Holliday junctions represent not only the most fundamental building block of structural DNA nanotechnology but are also of tremendous importance for the in vitro investigation of genetic recombination and epigenetics. Here, we present a detailed study on the room-temperature assembly of immobile Holliday junctions with the help of the single-strand annealing protein Redβ. Individual DNA single strands are initially coated with protein monomers and subsequently hybridized to form a rigid blunt-ended four-arm junction. We investigate the efficiency of this approach for different DNA/protein ratios, as well as for different DNA sequence lengths. Furthermore, we also evaluate the potential of Redβ to anneal sticky-end modified Holliday junctions into hierarchical assemblies. We demonstrate the Redβ-mediated annealing of Holliday junction dimers, multimers, and extended networks several microns in size. While these hybrid DNA–protein nanostructures may find applications in the crystallization of DNA–protein complexes, our work shows the great potential of Redβ to aid in the synthesis of functional DNA nanostructures under mild reaction conditions.
Collapse
Affiliation(s)
- Saminathan Ramakrishnan
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (S.R.); (C.K.); (G.G.)
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sivaraman Subramaniam
- Biotechnology Center, Department of Genomics, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany; (S.S.); (A.F.S.)
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Charlotte Kielar
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (S.R.); (C.K.); (G.G.)
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (S.R.); (C.K.); (G.G.)
| | - A. Francis Stewart
- Biotechnology Center, Department of Genomics, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany; (S.S.); (A.F.S.)
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (S.R.); (C.K.); (G.G.)
- Correspondence:
| |
Collapse
|
4
|
Vander Zanden CM, Czarny RS, Ho EN, Robertson AB, Ho PS. Structural adaptation of vertebrate endonuclease G for 5-hydroxymethylcytosine recognition and function. Nucleic Acids Res 2020; 48:3962-3974. [PMID: 32095813 PMCID: PMC7144941 DOI: 10.1093/nar/gkaa117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/07/2023] Open
Abstract
Modified DNA bases functionally distinguish the taxonomic forms of life—5-methylcytosine separates prokaryotes from eukaryotes and 5-hydroxymethylcytosine (5hmC) invertebrates from vertebrates. We demonstrate here that mouse endonuclease G (mEndoG) shows specificity for both 5hmC and Holliday junctions. The enzyme has higher affinity (>50-fold) for junctions over duplex DNAs. A 5hmC-modification shifts the position of the cut site and increases the rate of DNA cleavage in modified versus unmodified junctions. The crystal structure of mEndoG shows that a cysteine (Cys69) is positioned to recognize 5hmC through a thiol-hydroxyl hydrogen bond. Although this Cys is conserved from worms to mammals, a two amino acid deletion in the vertebrate relative to the invertebrate sequence unwinds an α-helix, placing the thiol of Cys69 into the mEndoG active site. Mutations of Cys69 with alanine or serine show 5hmC-specificity that mirrors the hydrogen bonding potential of the side chain (C–H < S–H < O–H). A second orthogonal DNA binding site identified in the mEndoG structure accommodates a second arm of a junction. Thus, the specificity of mEndoG for 5hmC and junctions derives from structural adaptations that distinguish the vertebrate from the invertebrate enzyme, thereby thereby supporting a role for 5hmC in recombination processes.
Collapse
Affiliation(s)
- Crystal M Vander Zanden
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ryan S Czarny
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ethan N Ho
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Adam B Robertson
- Department of Molecular Microbiology, Oslo University Hospital, Sognsvannsveien 20, NO-0027 Oslo, Norway
| | - P Shing Ho
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| |
Collapse
|
5
|
Abstract
The halogen bond (X-bond) has become an important design element in chemistry, including medicinal chemistry and biomolecular engineering. Although oxygen is the most prevalent and best characterized X-bond acceptor in biomolecules, the interaction is seen with nitrogen, sulfur, and aromatic systems as well. In this study, we characterize the structure and thermodynamics of a Br···S X-bond between a 5-bromouracil base and a phosphorothioate in a model DNA junction. The single-crystal structure of the junction shows the geometry of the Br···S to be variable, while calorimetric studies show that the anionic S acceptor is comparable to or slightly more stable than the analogous O acceptor, with a -3.5 kcal/mol difference in ΔΔH25°C and -0.4 kcal/mol ΔΔG25°C (including an entropic penalty ΔΔS25°C of -10 cal/(mol K)). Thus sulfur is shown to be a favorable acceptor for bromine X-bonds, extending the application of this interaction for the design of inhibitors and biological materials.
Collapse
Affiliation(s)
- Melissa Coates Ford
- Department of Biochemistry & Molecular Biology, Colorado State University , 1870 Campus Delivery, Fort Collins, Colorado 80523-1870, United States
| | - Matthew Saxton
- Department of Biochemistry & Molecular Biology, Colorado State University , 1870 Campus Delivery, Fort Collins, Colorado 80523-1870, United States
| | - P Shing Ho
- Department of Biochemistry & Molecular Biology, Colorado State University , 1870 Campus Delivery, Fort Collins, Colorado 80523-1870, United States
| |
Collapse
|
6
|
Structure of the Holliday junction: applications beyond recombination. Biochem Soc Trans 2017; 45:1149-1158. [PMID: 28842529 DOI: 10.1042/bst20170048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
The Holliday junction (HJ) is an essential element in recombination and related mechanisms. The structure of this four-stranded DNA assembly, which is now well-defined alone and in complex with proteins, has led to its applications in areas well outside of molecular recombination, including nanotechnology and biophysics. This minireview explores some interesting recent research on the HJ, as it has been adapted to design regular two- or three-dimensional lattices for crystal engineering, and more complex systems through DNA origami. In addition, the sequence dependence of the structure is discussed in terms how it can be applied to characterize the geometries and energies of various noncovalent interactions, including halogen bonds in oxidatively damaged (halogenated) bases and hydrogen bonds associated with the epigenetic 5-hydroxylmethylcytosine base.
Collapse
|